61970-454 ( IEC:2010
– 12 –


 Draft IEC 61970: Energy Management System Application Program Interface (EMS-API) –

Part 454: Business Object Registry Service Specification


Revision 3b
2010-05-15
Table of Contents

5Scope

Normative References
5
Business Object Identification Problem Discussion
5
Business Object Identification Use Cases
8
Establishing the MRID and local names for a new Business Object
8
Coordinated Model Exchange Use Case (from 61970-452)
9
Object Registry Requirements
11
Naming Service Profiles
12
Information Model
12
Annex A Sample Profile Definition (Informative)
15
A.1
Using GDA to Access Cross Reference Information
15
A.1.1
Registry Access Points
15
A.2
Resource ID Service and Generic Data Access Interface Description
15
A.3
Access Point Examples Using GDA
16
A.3.1
GDA Based Interface Examples
16
A.4
Access Point Examples Using OPC UA
18
A.4.1
OPC UA Based Interface Examples
18



INTERNATIONAL ELECTROTECHNICAL COMMISSION

____________

EMS-API –

Part 454: Business Object Registry Service Specification

FOREWORD

1)
The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2)
The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3)
The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.

4)
In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5)
The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6)  Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.


International Standard IEC 61970 has been prepared by Working Group 13, of IEC technical committee 57 : Power system control and associated communications:

The text of this standard is based on the following documents:

	FDIS
	Report on voting

	57/XX/FDIS
	57/XX/RVD



Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

INTRODUCTION

This specification addresses the problem created when different applications need to communicate information about individual “business objects” (usually real world things like circuit breakers, transmission lines, purchase orders, etc.), and therefore require a common system of identifying individual instances of those business objects, but where these same applications and their users have different names or even different object representations for these business objects. 
The standard presented here adopts a very general approach to coordinating instance identification of business objects. It is almost completely independent of the rest of the 61970 series of specifications, which fact allows it to be useful in recording name translations between non-standard local environments and immunizes this approach from version changes in the CIM business domain information model. The only element of 61970 that is shared by this standard is the requirement that standard message payloads among components (defined in other standards) utilize a Master Resource ID (MRID) as the means of referring to a business object instance.
INTERNATIONAL ELECTROTECHNICAL COMMISSION

____________

EMS-API –

Part 454: Object Registry Service Specification

Scope

Part 454 normatively specifies services that provide applications access a business object registry. These services allow applications to make initial registrations of business objects, to register local names and structural translations for business objects, and to access any information that has been registered for a business object.
· These services rely on agreement among participating applications to use a Master Resource ID (MRID) as the common means of identifying business objects in messages exchanged between them. Certain characteristics of MRIDs are normative; others require common agreement among all participants and have recommended forms.
· Implicitly, these services demand a persistent store of business objects. The implementation of such a store is discussed informatively herein, but the structure of the store and the reliability, security and other characteristics of the store are left to competitive implementation. 

· Implicitly, these services also presume a consistent architectural approach to integration of the applications that use the services. This integration architecture is presented informatively herein as a series of use cases that illustrate how we expect applications to make use of the defined services.
Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 61970-1, EMSAPI – Part 1: Guidelines and General Requirements

IEC 61970-2, EMSAPI – Part 2: Glossary

Business Object Identification Problem Discussion
Consider two applications that previously have had no automated communication with other systems – i.e. no interoperation. Assume that both of these applications have something to do with generators. Both apps therefore have some “modeling” function that allows users to add new generators when new generators go on-line, and to associate certain attributes with generators. When this is done in both apps, there is some degree of duplication of data entry (enterprise wide) which is both an added cost and a potential source of inconsistency. In particular, the modelers in those apps probably assign generator names according to their own naming conventions, which typically means that at least some names are different for the same generator.
Now assume that we need to establish some kind of interoperation. Perhaps app A needs to send results to app B from time to time. But if A sends a message that says “generator Fred is off line”, how does app B understand that this is referring to the generator that it calls something different, like “Freddie”? Worse, what if A and B both use the name ‘Fred’, but for different generators? Both of these possibilities occur in the real world, and it is often impractical to impose a common naming convention on A and B – either because of the cost of changing the application software or because there are genuine reasons for users in the two environments to use different labels associated with generators.
A simplistic solution to this problem that has been implemented often is that a table of correspondence is created between applications A and B. The table could be managed by either the A side or the B side. It is initialized (usually by manual entry) with entries such as the Fred-Freddie pair. If the B side has the translation table, the A side sends the message using its name and the B side translates to its own name on receipt. This is not an expensive solution to implement – at least not if it is just a message from A to B that we are worrying about, but a result of this implementation is that there is now another bit of modeling that must be maintained – the original two apps plus the table of correspondence. 

If there is just one instance of this kind of interoperation, the problem would be minimal, but integration grows inexorably, and over time, these relatively simple individual solutions to interoperability typically multiply into a data maintenance disaster. In utility IT operations, there might be 25 different apps representing generators with hundreds of point-to-point connections about generators and thousands across all types of objects. The number of separate model maintenance steps required to put a new entity on-line across the IT operation becomes significantly large and the sum of all such operations for all kinds of business objects about which information is exchanged grows into a major cost issue as well as a major potential source of data errors. Further complications arise when an exchange involves parties in multiple enterprises.
What everybody wants, ideally, in order to reduce cost and risk is that there is one clear point of origin for each item of information, and this updates all systems as well as their interoperation automatically. This does not mean that one person enters all information or that all information is entered in one place – just that each piece of data is entered once – so one party might enter a generator with its name, and then another party that required a different name might be notified and requested to add their name. What the IT department wants in addition is that these hundreds or even thousands of interfaces are implemented in a consistent pattern. These connections require change from time to time as business needs change, and the cost of change is greatly reduced if the implementations are similar and therefore easy to understand.
Achieving a consistent, enter-once, fully automated result requires both business process agreements and software agreements. The business process agreement says a) who is going to provide the originating definition of a given object and b) who is going to add information. In other words, you have to make an agreement among the affected parties (who were all carrying out maintenance operations) and decide who the one point of origin is for any given object – and who else may need to get notified. If the process is entirely internal, these processes may exist in the form of maintenance procedures. But where multiple enterprises are involved, and where industry standards are desired, it is no small task to reach the necessary business agreements. It is a necessary starting condition, though – you cannot proceed to solution of any individual problem without defining this part. 

Implementing the solution on an interoperability platform once this is done involves some sub-problems:

· How to create, store and serve the tables of correspondence.

· How to facilitate debugging of incorrect assignments – e.g. how do you recover from a situation where two parties created separate representations for the same object.

· Definition of messaging that informs all parties to the interoperation about new object definitions, so that they can all do what they need to do in order to stay in synch.

A globally unique identifier for an object is not an absolute requirement – the minumum requirement is simply for tables of correspondence between local identification conventions. However, unique universal identifiers are the recommended solution mechanism. The advantages of a universal identifier are:

· Each application needs to convert from its internal conventions to the universal id, rather than create pair-wise tables for each point to point connection. This means that no application ever needs knowledge of another’s naming, which contributes to a desirable “arms-length” relationship among applications.
· A registry database of each object, together with the names that are assigned from each environment, is very handy in helping to debug problems. (And such a registry by default has a unique id as the primary key for objects that are registered.)
· In a globally unique identifier scheme, the identity of a business object is independent of the CIM information model used to classify it. This means that a service can be provided that will return the CIM class for any MRID.
Nor is it an absolute requirement that all universal identifiers (MRIDs) observe the same formatting/creation conventions. However, agreement on MRID structure (particularly length) is also desirable because it helps to achieve efficient as well as easily understood implementations. In this standard, we recommend an MRID structure, but we recognize that there may be situations where parties, for one reason or another, want to determine there own form of MRID. This standard is open to such choices, but with two important stipulations: 1) choosing a different MRID format for group X (from group Y) means that it will be harder to implement interoperation between the two groups, should that ever become necessary, and 2) product developers will tend to implement the standard form of MRID, and may or may not be able to accommodate a local choice without some customization.
The foregoing discussion has followed the case in which a 1:1 correspondence exists for a generator in apps A and B. Sometimes, though, app A and app B don’t take an identical view of what a generator is. For example, app A might view a combined cycle unit as one generator, while application B views it as two because it is looks at generation from the point of view of the electrical outputs into the grid, rather than the unit as a whole. In the generalization of this case, we can think of a series of transformation functions that must be executed to transform between objects in the universal canonical structure (i.e. CIM) and objects in a local application structure, and it is clear that once a “mapping” between CIM objects and local objects is figured out, it would be useful to remember the mapping and the function for each transformation instance, because the initial establishment could involve manual entry or significant searching or both. Therefore, it is desirable that a registry can describe maps consisting a set of n:m correspondences via a named function.
Business Object Identification Use Cases
Establishing the MRID and local names for a new Business Object
The Object Registry is designed for use in exchanges of information among parties that have agreed to common MRIDs for the entities about which data is being exchanged.

Implicit to any such agreement – and extremely important – is that the parties must agree as to how each physical entity is assigned exactly one MRID. Obviously, if two or more different assignments (i.e. registrations) are made for a particular business entity, then the exchanges will not function as they are supposed to. Unfortunately, there is no software method available that will guarantee this – instead, an appropriate business process must be designed and implemented. These procedures will vary, using some rule (like ownership) to determine which party will assign the MRID. The party that is responsible for assigning an MRID is known as the ‘Model Authority’ for the object. Note that instances belonging to the same class may have different Model Authorities. (If GUIDs are used as the standard form of MRIDs, then multiple Model Authorities may generate unique MRIDs without any special need for coordination.)
The procedure is:

1. New business object requires registration.
2. The Model Authority uses a designated business application to create an initial CIM representation of the object. Once properly validated, this application will create the initial public registration of the business object.
3. The registration of the business object records the following information in the Object Registry:

· The MRID.

· The object class.

· The local object name used by the registering party.

· The context group to which the local name belongs. For example: if Fred is the model authority and the things being registered are widgets, the names might be grouped under ‘Fred’s widgets’.
· The model authority.

Once registered, any application participating in the integrated dialog may ‘see’ the object’s identifier, as well as any local names that have been registered for it. It may also register its local name and register to receive notifications of other registrations. i.e. No matter what the source of the original registration, the process of establishing dialog about an object is the same.
4. Depending on the degree of automation of the overall processes, notifications may be sent to other parties that need to know when a new object of a particular type is registered. These notifications may serve to trigger assignment of local names by other parties.
5. When a secondary party becomes aware of a new business object, it will determine how that new object corresponds to its internal representation. Two basic situations are possible:

a. The secondary party uses the primary registration to trigger update of its own databases. It gets any data it can from the primary registrant, and then asks its users to complete the picture. If there is a local naming scheme, it may develop a name algorithmically or ask the users to provide one. This is the ‘enter once’ paradigm where applications cooperate to minimize duplicate data entries.

b. Alternatively, if an application has independently duplicated an original data entry for the business object, then receipt of primary registration triggers a need for the user to tell the system what the correspondence is. This is often what happens when two stand-alone applications are integrated together after their original design.
6. In either case, the secondary registration includes its local name correspondence to the CIM MRID by providing:
· The association to the primary registration.

· The local object name used by the registering party.

· The context group to which the local name belongs. For example: if Bob is the application and the things being registered are widgets, the names might be grouped under ‘Bob’s widgets’.

Coordinated Model Exchange Use Case (from 61970-452)
The CIM Model Exchange standard (61970-452) defines standards for model exchange that support a number of patterns that the member companies in an interconnection can use to develop interconnection-wide models cooperatively. The figure in this section depicts a typical pattern, which hypothesizes a group of transmission owners (TOs) and an interconnection-wide security/market authority at the upper level. 
The general idea is that modelling information originates at the TOs, because they are the logical source for detailed models for their territory. An overall interconnection model is to be assembled at the upper level from the contributed parts, and made available back to the TOs as a source of network modelling external to their own system. This use case presumes that the TOs have agreed upon the boundary points and represented those in a Model Authority Set as is described in 61970-452.
In this use case, we focus on an Object Registry at the upper level that will register all objects involved in the model exchange business processes. This in no way precludes each TO from having an Object Registry that governs their integrated enterprise, in which the objects are also registered. That is, there is no requirement that an object is registered in one and only one registry. There would only be a strong recommendation that if an object is registered in more than one registry, the same MRID should be used in each so that they can be related together if and as the need arises.

[image: image1.emf]PRIMARY

 Interconnection 

Model

Interconnection 

Model

TO 1 

External Model

Assembly of full primary model

Creation of derived target models

TO 1

TO 2

TO n

Regional 

Authority

TO 1 

Internal Model

TO 2

External Model

TO 2 

Internal Model

TO n 

External Model

TO n 

Internal Model

Interconnection 

Object Registry

Name translation point

Primary registration point


Figure. Cooperating Model Exchange in an Interconnection.
The figure shows the following stages of the process:
· Each TO maintains its own internal model.

· They are the ‘model authority’ for their territory. 

· They represent their territory as a CIM Model Authority Set.

· As they make changes to their operations model, any new objects are assigned GUIDs as MRIDs.

· Once changes are finalized, new versions of their internal model authority set are exported to the regional authority.

· This could be done either in incremental or full form, as defined in the 61970-552 standard.

· The TO local name is included in the export.

· The regional authority receives a new internal model and updates the interconnection model.

· The received model objects are checked to see if there are new objects, or objects that have been removed.

· A primary registration is made in the interconnection Object Registry for any new objects. (Designated by the blue stars in the Figure.)
· The local names supplied by the Model Authority are registered with the object.

· Removed objects are left in the Registry.

· The export fits into the slot defined by the pre-agreed boundary model.

· The interconnection model contains the detail as transmitted by each TO. In a sense, this is a virtual model, since it may never be used in its full form for any operations purpose.

· The regional authority may validate the model with testing if the agreed business process assigns this responsibility.

· Notifications may be sent to other TOs about the new version, if this is included in the business process.
· When a part of the full interconnection model is updated, the updates are of interest to those TOs who use that model as the representation of their external network. They will therefore initiate an update of their external from the full interconnected model.

· An external model for a given TO may require different local names:

· Renaming may be forced because their local EMS has restrictions on naming that prevents their using the same name as the source region. (Name lengths and special characters are common reasons.)

· Renaming may be done simply as a matter of preference because the local user has an alternative name in common use at their site.

· The export uses the local name set of the receiving TO (as opposed to the local names of the Model Authority TO).
· For new objects, local names may be manually supplied or generated automatically.

· When this occurs, a secondary registration is made recording the assigned name. (Designated by the yellow stars in the Figure.)

· Previously existing object names are available from the interconnection Object Registry.

A number of variations on this scenario are possible. This particular use case was chosen because it results in one registry that has all name correspondences for a given object, which is convenient when debugging modelling problems.

Object Registry Requirements

Requirements for an Object Registry:

1. Support registration of Model Authorities and association of each object to its Model Authority (i.e. its primary registrant).

2. Support creation of a context group for local names with authorization controls for changes to the group names.

3. Support primary registration of an object, with class and local name.

4. Support any number of secondary registrations of an object with local names.

5. Provide a means register for notification of primary or secondary registrations.
6. Provide a means to obtain object name information, filtered by

a. Class.

b. Context group.

c. Model Authority.

7. Assure that each MRID is unique.
8. Provide a means to obtain all registered information for a given MRID.

9. The registry shall be capable of being consistently applied to all instances of any type, e.g. Substation, PowerTransformer, Measurement or any other CIM type.

10. Each IT system shall be allowed to keep its local naming conventions and resource identification without change.

11. The registry shall support name cross-referencing of resources even when local resource names are not unique. 
12. A set of local names that has been identified to represent the same resource is given a unique persistent identifier called a Master Resource ID (MRID).  Each cross-reference entry is associated with one and only one MRID.  
13. Provide a facility to associate property values with each resource name.  

14. Users of a registry are presumed to share a canonical data model, and the class membership of an object is saved in the Registry.
15. Local names may be an arbitrary collection of name components, not just what one would traditionally consider to be a name. Thus, for example, a local application could distinguish a station by a name + geo coordinates, where the name portion was not unique.
16. As different geographical regions will have separate real world resources, many disjoint coordinating registries shall be possible.

17. The registry shall allow a local name change without affecting the MRID. 
18. Provide user security levels to prevent modification of the local resource names and property values by non-authorized NameOwners.

Naming Service Profiles

Information Model

An example information model is provided to show how data in the GDA Extended Resource Identification Service and GDA Query Service can be used to access cross-reference information. It is not intended to be an implementation model and it is expected that an implementation will require a more elaborate model. The UML model for this is shown in Figure D.1.

[image: image2.emf]
Figure D.1

In the description below, classes, attributes and references present in Figure D.1 are shown in italics.

The ServerTable variable defines an array of server URIs. Each URI represents a globally unique logical name for a server.  Each registry server instance has a single URI that is used in the server tables of other registry servers.   

A ResourceNameRepository (RNR) is used by a number of NameOwners that have agreed to create a mapping between their LocalNames. A NameOwner is a member of a ResourceNameRepository. A NameOwner can be an organization or some other arbitrary entity assigned as owner of names. Multiple LocalNames are tied together using a CrossReference as a key. Each LocalName must belong to a single NameOwner. A LocalName is only allowed to be part of one CrossReference within one ResourceNameRepository but may appear in many different ResourceNameRepositories. LocalName and CrossReference are specializations of ManagedObject. A ResourceNameRepository maintains creation/modification information for all ManagedObjects. 

A NameOwner is associated with one or more ERP_Contacts.  Each ERP_Contact is associated with an ERP_Address. ERP_Contact contains a NameOwner’s contact person name and ERP_Address contains the contact person’s address.
A ModelingAuthority  is a subtype of a NameOwner that is responsible for the initial creation of a CrossReference. A ModelingAuthority  is a NameOwner, hence a ModelingAuthority  may also be an Owner of LocalNames. A NameOwner that is not a ModelingAuthority  is not allowed to create CrossReferences. Several NameOwners may also be a ModelingAuthority  and at least one NameOwner must be a ModelingAuthority  so that CrossReferences can be created.

A Class describes a type of real world object (e.g. PowerTransformer, Substation, Measurement etc.) that is represented by a CrossReference. A Class belongs to a Schema, e.g. the CIM or any other schema. A Class has Properties. The Properties define what PropertyValues may appear in the registry. PropertyValues describe a ManagedObject (e.g. location, rating, etc.).  PropertyValues not defined by any Property are not allowed.
A CrossReference is a ManagedObject. Once a CrossReference has been created and the required PropertyValues are set by the ModelingAuthority , the resource is sufficiently described for other NameOwners to discover what real world objects the CrossReference refers to. Required PropertyValues can only be filled in by the ModelingAuthority . Other NameOwners may add non-required PropertyValues provided that their definition exists as a Property in the Schema defined for CrossReference’s Class.  A non-required Property contains additional information about a ManagedObject, (e.g. weight, size, color, length, etc.).

An MRID is a globally unique number, e.g. a so-called Globally Unique IDentifier (GUID). A GUID is a persistent 128-bit number that is generated by a specific algorithm. Programs that generate GUIDs are an integrated part of all major operating systems.

A ResourceNameRepositoryHost provides an Accesspoint that can be used by clients to actually retrieve or enter data from/into a ResourceNameRepository. 

Name:string





(from ERP_Support)



ERP Address



required : boolean



(from ERP_Support)





LastModified :DateTime



0..*



1..*



1..*



ERP Contact



1



+Owner



1



1



+Member



0..*



+Members



1



0..*



NameOwner



1..*



0..*



0..*



description : String



name : String



ID : PropertyID



Property



0..*



1



0..*



1



0..*



1



0..*



1



ID : ClassID



description : String



name : String



Class



1



0..*



1



0..*



1..*



1..*



0..*



1



+Creator



0..*



1



1



0..*



1



0..*



MRID : ResourceID



CrossReference



1..*



1..*



1..*



1..*



name



ResourceNameRepository



1



0..*



1



0..*



created :DateTime



Managed Object



value : SimpleValue



property : PropertyID



PropertyValue



ModelingAuthority



ResourceNameRepositoryHost



description : String



name : String



Schema



0..*



+Owns



0..*



0..*



0..*



name : String



LocalName



+PropertyValues



Accesspoint






[image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8.emf][image: image9.emf]_1335348718.vsd
TO 2


TO n


PRIMARY
 Interconnection 
Model


Regional Authority


TO 1 
Internal Model


TO 2
External Model


TO 2 
Internal Model


Interconnection Model


TO n 
External Model


TO n 
Internal Model


TO 1 
External Model


Primary registration point


Assembly of full primary model


Creation of derived target models


TO 1


Interconnection Object Registry


Name translation point



