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ABSTRACT
A recent study revealed that fine-grained energy usage data
could potentially leak sensitive information about an elec-
tricity customer. On the other hand, a number of online
service providers utilizing such data have emerged and im-
proved effectiveness of smart grid technologies (for instance,
demand-response aggregators), and therefore sharing of data
is getting popular. In this work, we propose a customer-
centric framework to manage, store, and share energy usage
data in a privacy-enhanced way. We present a mechanism
to enable customers to flexibly control the amount of energy
usage information disclosed while still allowing third-party
service providers to be convinced of the authenticity of data.
A prototype implementation using the widely used Green
Button data model is presented and evaluated. We further
discuss the design of a demand-response aggregation service
on top of the proposed framework.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection; H.3.5 [Information Storage and
Retrieval]: Online Information Services—Data Sharing

General Terms
Security, Verification

Keywords
Data privacy, Green Button, demand-response aggregation

1. INTRODUCTION
Broad penetration of smart meters and advanced meter-

ing infrastructure (AMI) has enabled bidirectional commu-
nication between utility companies and customers and col-
lection of fine-grained energy consumption data. It benefits
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both the generation and distribution side (i.e., utility compa-
nies and independent service operators) and the demand side
(i.e., electricity customers). For instance, a utility can use
the collected data to better predict peak demand to avoid
service outages and improve the stability of the grid. Also,
a utility can have more control, either directly or indirectly,
over its customers’ energy consumption pattern, for exam-
ple by means of direct load control or demand response,
which may result in lower operational cost for additional
generation. On the other hand, customers can benefit by
knowing and optimizing their energy consumption patterns
to improve energy efficiency. In addition, home energy man-
agement systems (HEMS) or building energy management
systems (BEMS) can use energy consumption data to au-
tomatically control appliances in the customer’s premises.
Other innovative new technologies that utilize such data and
communication infrastructure are also emerging.

The landscape around data management and sharing in
smart grid systems is getting more complicated. For in-
stance, data analytics on customers’ energy usage data is of-
ten outsourced by utility companies to third parties. An ex-
ample is the partnership between PG&E, which is the largest
utility company in California, and Opower, a software-as-a-
service company located in Virginia, which provides PG&E
recommendation services [17]. Moreover, in order to facil-
itate large-scale demand-response services, recently a num-
ber of third-party service providers have begun offering the
services of Demand-Response aggregators (or DR aggrega-
tors). Representative examples of DR aggregators include
EnerNOC [3] and ECS [1].

Such third-party services are beginning to play an impor-
tant role in the smart grid, but customers’ privacy is not the
first priority under the current system model. For instance,
EnerNOC [3] installs its own metering device at each cus-
tomer’s site so that it can obtain fine-grained meter reading
data to facilitate its services. Thus the customer’s energy
usage data, which are often called CEUD (Customer-specific
Energy Usage Data), combined with personally identifiable
information like billing information, is collected by DR ag-
gregators as well as by utility companies. While the latter
have a justifiable reason, agreed to by customers, for collect-
ing such data, the former may not. DR aggregators could
potentially gather as much information as they want, re-
gardless of whether it is needed for providing services. A
similar concern could be raised if services are outsourced
to a third party and customers do not have direct control
over data sharing. Such issues not only violate the “minimal
disclosure” principle, which is desired for privacy protection



in cyberspace [16], but also, given the possibility of unau-
thorized data usage and authorized or unauthorized sharing
and unintentional information breach, increase the risk of
jeopardizing customers’ privacy, for example, by means of
methods called Non-intrusive Load Monitoring (NILM) [20]
or Non-intrusive Appliance Load Monitoring (NALM) [23].
Moreover, breach of sensitive data handled by third-party
service providers, whether through hacking, malware, or dis-
gruntled insiders, would be a serious concern. Therefore,
from the customers’ perspective, it is desirable to minimize
the amount of data shared or disclosed to third parties while
obtaining maximal benefit with respect to services. On the
other hand, to provide services, third parties need to ensure
that the data provided are the actual data as collected and
supplied by the utility and have not been modified. Since
a malicious customer may falsify its data to skew its per-
sonal usage history to gain illegitimate advantages, that is
especially the case when accounting and billing are involved,
such as in DR aggregation services.

In this work, we propose a customer-centric framework for
energy usage data management that emphasizes customer
privacy as well as data verifiability for third-party service
providers. This paper is organized as follows. We first sum-
marize the goals and contribution of this work in Section
2. In Section 3 we discuss the customer-centric energy us-
age data management framework, including cryptographic
primitives, that we designed to meet the goals. Section 4 dis-
cusses the implementation of the framework using the widely
used Green Button data model [6]. Limitations of the stan-
dard schema and enhancement of it are also discussed. In
Section 5, we present one application of the proposed mech-
anism to provide customer-centric demand-response aggre-
gation services. Section 6 discusses related work, and we
conclude in Section 7 with a discussion of future work.

2. GOALS AND CONTRIBUTIONS
Just as in the e-healthcare domain [28], an argument about

the ownership of data is taking place in the smart grid area,
and we advocate the standpoint that each customer shares
the ownership of his or her own energy consumption data
and therefore should retain awareness and control over it
even if data are collected and stored by utility companies. In
this section, we list the requirements for a customer-centric
system architecture for energy usage data management in
a setting where third-party service providers are involved.
Specifically the following goals must be met to minimize
customers’ privacy concerns.

• Energy usage data are accessible to the customer to
whom the data are pertinent.

• Sharing of energy usage data is done at customers’
discretion.

• Customers should be able to control the amount of
personal energy usage information to be disclosed upon
sharing.

At the same time, we need to ensure that the shared energy
usage data is meaningful for third-party service providers.
We believe that verifiability of data is key. In other words,
if authenticity of data cannot be verified by a third party,
that third party would hesitate to use those data for certain
types of services, such as demand-response aggregation for

which customers’ receive monetary incentives according to
their performance. Without such verifiability, the types of
services that can be provided and the effectiveness of smart
grid technologies would be significantly limited. Thus, the
fourth goal is:

• The authenticity and integrity of energy usage data
shared by customers are verifiable while meeting the
above privacy goals.

Our contributions towards meeting these goals include:

• A system design involving a customer-controlled repos-
itory that stores a customer’s energy usage data and
handles data-sharing in a privacy-preserving way.

• A Merkle Hash Tree based design for redactable, veri-
fiable energy usage data.

• A prototype implementation of the proposed mecha-
nism in an extended Green Button data model [6].

• An application of the proposed framework to realize a
customer-centric demand-response aggregation service
model.

3. APPROACH FOR CUSTOMER-CENTRIC
ENERGY USAGE DATA MANAGEMENT

3.1 System Architecture

Figure 1: High-level View of Customer-centric En-
ergy Usage Data Management and Sharing

This section describes the architecture of our system. Fig-
ure 1 presents the participating entities and illustrates the
information flow among the entities. As can be seen in the
figure, there are four participating entities in the system.

The central entity to enable customer centricity is a data
repository (Repository in the figure) controlled (and there-
fore trusted) by a customer (Customer). The repository
can be a storage module hosted on a customer’s own com-
puter, or can be a server space hosted by a service provider



that the customer can trust. In the latter case, the con-
cept of the repository is analogous to a Personal Healthcare
Record (PHR) system in the e-healthcare domain [9]. Cus-
tomers can download their energy usage data from a util-
ity system (Utility) and store it on their repository, or the
repository can periodically or automatically download the
data from the utility on the customers’ behalf. In either
case, as explained below, the data are digitally signed by
the utility. We use the term “utility” in this work, but it
can be any entity that collects and manages customers’ en-
ergy usage data, for instance independent system operators.
Customers can access and browse the data stored on the
repository whenever they want. Such access or control over
the repository may be possible via dedicated client software
or a Web browser. Additionally, customers can issue com-
mands to the repository when they intend to share some
data with a third party service provider. Here, the reposi-
tory is responsible for generating a minimal-disclosure form
of energy usage data based on the data originally provided
by the utility. In other words, customers can redact part of
the data that they think is irrelevant to the expected ser-
vice or that they do not want to share with the third party.
Such a process can also be automated through definition of
data-sharing policy on customers’ repository.

Data provided by the utility are originally collected by
smart meters that are installed on customers’ premises. We
assume that energy consumption data are measured in an
interval (for instance, 1 minute or 5 minutes) that is short
enough that the resulting data set can be used for a variety
of services, and is reported back to the utility periodically
(for example, hourly or every 15 minutes). The bandwidth
in the metering infrastructure is often limited, but reporting
in 15 minutes intervals or longer is realistic, as demonstrated
in [24]. Before providing data to a customer or his or her
repository, the utility makes its signature on the data so
that any party that knows and trusts the utility’s public
key can be convinced that the data have been provided by
the utility and have not been tampered with. We assume
that the utility (and its public key) is trusted by customers
as well as third parties. The utility company can be issued
a digital certificate from a trusted Certification Authority
(CA), and it can be posted publicly on the utility’s website.

Third Party can be any party that provides services based
on energy usage data provided by customers. For exam-
ple, service providers that offer energy data analytics, rec-
ommendations, or demand-response aggregation may be in-
cluded. We do not make any trust assumptions on third
parties, and therefore data disclosure should be minimal to
minimize privacy concerns. Whenever necessary, third par-
ties can verify utility’s digital signature for data authenticity,
which allows them to protect themselves against malicious
or fraudulent service requests.

In our framework, utility companies share data only with
customers, and data-sharing with third parties always goes
through the customer’s repository. In other words, cus-
tomers are required to trust utility companies only in col-
lection of data, not in sharing of data. Another advan-
tage of the lack of direct interaction between the utility and
third party service providers is that the utility cannot trace
which service providers a certain customer interacts with,
which enhances the customer’s privacy. The implementation
change required on the utility’s system is relatively small,
and only a signing task needs to be added before it shares

data with customers. We describe details of the signing pro-
cedure in Section 3.2, and the overhead for it will be shown
in Section 4. A utility company still has full access to the
customer’s data that it collects, and can use it for prediction,
anomaly detection [30], and so on, if the customers agree to
it in advance. Thus, our scheme does not affect the quality
of its services. Likewise, customers can also do data analyt-
ics on their own data, if such functionality is supported by
a repository. Note that data privacy against utility compa-
nies, while it is an interesting future research topic, is not
part of our goals.

3.2 Design for Verifiable Redaction of Energy
Usage Data

In this section, we present our design for flexible control
disclosure of customers’ energy usage data while maintaining
data verifiability. We employ the idea of Merkle Hash Tree
(Figure 2) and tailor it to meet security requirements specific
to energy usage data.

3.2.1 Merkle Hash Tree
A Merkle Hash Tree [31, 32] is a tree in which each node

stores a hash of some data. Leaf nodes store the hash of the
data blocks, and the non-leaf nodes store the hash of the
content of their children. Figure 2 illustrates a binary hash
tree, but a Merkle Hash Tree does not need to be a binary
tree. H(D) is the hash of the data block, and H(L,R) is the
hash of the concatenation of the left and right child nodes’
content.

Figure 2: Merkle Hash Tree

Our design of customized Merkle Hash Tree is illustrated
in Figure 3. The data block in our design consists of en-
ergy usage data along with their metadata, such as units
and timestamp. The implication is that the design provides
authentication and integrity verification for the metadata as
well as the data. The rest of a tree is constructed much like
a regular Merkle Hash Tree but with some modifications in
hash value calculation, which are explained later in Section
3.2.2. In our scheme, a utility needs to sign the root hash
of the tree with its private key to provide authenticity and
integrity protection for the data.

Under this construction, any party that trusts the utility’s
public key can be convinced of the authenticity and integrity
of the data. At the same time, each customer can flexibly
redact (or hide) an arbitrary portion of the data, without los-
ing the verifiability of the utility’s signature, as illustrated in



Figure 3: Verifiable, Redactable Energy Usage Data Based on Merkle Hash Tree

Figure 3. To hide any section of data, we replace it with the
hash value of the common parent. It allows the verifier to
reconstruct the same root hash value and verify the authen-
ticity of the meter readings that are not redacted. In that
way, a customer can selectively disclose the minimal amount
of information that he or she thinks is definitely required for
the desired service, while still benefiting from third-party
services.

3.2.2 Customization for Energy Usage Data
While we rely on the notion of redactable digital signa-

tures using Merkle Hash Tree [25], some characteristics of
energy usage data and the use case prevent us from simply
using regular cryptographic hash functions, such as SHA-
256, to calculate the hash tree, as we discuss in this section.
Figure 4 shows an example of energy usage data extracted
from Green Button data provided by EnerNOC [4]. Some
details of Green Button [6] will be discussed in Section 4;
for now, we focus on the meter reading that appears under
value elements.

As can be seen in Figure 4, meter reading values are rep-
resented as numbers (in this specific example, as integers),
and the values are relatively close to each other. In this
example, the maximum difference among the values is just
780. In addition, a third-party service provider would poten-
tially have millions of customers, which likely include many
customers with similar energy consumption patterns.

If the hash value is hiding one data block, a third party
can use rainbow tables to find the plain text value from the
hash values. Considering that search space may be small, it
can be very easy to generate such a table and look up the
pre-image quickly. Note that just one table would be suf-
ficient for all customers. A similar concern could be raised
when multiple values are redacted. Given the collision re-
sistance of secure cryptographic hash functions, the same
hash values appearing at the same level of a tree are most
likely inserted to mask the same sequences of values below

<IntervalReading>
<timePeriod>

<duration>300</duration>
<start>1325389500</start>
<!--2011-12-31 23:45:00 -0400-->

</timePeriod>
<value>18706</value>

</IntervalReading>
<IntervalReading>

<timePeriod>
<duration>300</duration>
<start>1325389800</start>
<!--2011-12-31 23:50:00 -0400-->

</timePeriod>
<value>18316</value>

</IntervalReading>
<IntervalReading>

<timePeriod>
<duration>300</duration>
<start>1325390100</start>
<!--2011-12-31 23:55:00 -0400-->

</timePeriod>
<value>19096</value>

</IntervalReading>

Figure 4: Sample Energy Usage Data

them. In addition, there is a chance of determining a value
or sequence of values without the use of rainbow tables if it
appears twice or more in the file and one of the values or
one of the sequences is hidden and another is present in plain
text. An adversary can keep a record of hashes generated by
the plain text and match it with the hashes present in the
file to determine the actual value. Since the input range is
bounded and short, the adversary can create a small rainbow
table of its own. It can estimate the values, pre-compute the
output hashes, and store them in a database. The hash val-
ues will be useful for all the data the adversary receives from
all the users. The larger the data sample, the better it is
for the adversary as it can match more redacted hash values
with the plain text values.



Taking these observations into account, we made the fol-
lowing modifications to the hash computation. The aim of
these modifications is to make it significantly more difficult
for third parties to recover redacted values.

1. Keyed Hash Using a Per-Customer Key

To prevent malicious third parties from correlating hash
values among multiple customers, we utilize a keyed
hash function (e.g., HMAC) with a per-customer key
for hash tree calculation. The key is uniquely chosen
for each customer and is shared with the utility com-
pany and relevant third parties. The utility uses it to
construct the Merkle Hash Tree and calculate the root
hash. The third parties use it to reconstruct the tree
and get the root hash value, which is verified using the
utility’s public key. For example, we could derive such
a shared key by using a customer-chosen PIN code
that is utilized in PG&E’s system such that only a
third party that knows the PIN can access the corre-
sponding customer’s energy usage data [12]. However,
we should note that in our scheme, such a key is not
used for data confidentiality, authentication, or access
control.

2. Random Initialization Vector (IV) and Counters

Even with the first modification, the same inputs in
the same customer’s data provide the same output
hash values. An adversary can still take advantage
of that to facilitate its effort to break privacy; if it
sees the same hash value at the same level of the tree
multiple times, the adversary does not have to repeat
brute-force calculations. To mitigate that risk, we use
a cryptographically secure random number as an ini-
tialization vector (IV) to derive a new key for each
data block to be hashed. One IV is generated for each
data file signed by the utility. Then, within the file,
IV is incremented by 1 for each data block, and then
XOR’ed with the per-customer key to derive a new
key to ensure that no two values in the same file result
in the same hash value. Such a counter also prevents
unauthorized reordering of data.

The resulting construction is as follows. The hash value
computation for the leaf nodes of the Merkle Hash Tree in-
volves data d, key k, and a keyed hash function M(d, k) and
is calculated as

H(D, IV, i) = M(D, (K⊕(IV + i))) (1)

where D is the data block to hash, K is the key unique to
the customer, IV is the initialization vector unique to a data
file and i is the counter value for the data block. Hash values
for non-leaf nodes are calculated as

H(L,R) = M(L||R,K) (2)

where L is the hash of the left child node, R is the hash of
the right child node, and K is the customer’s key.

3.3 Security Discussion
The keyed hash and IV make it hard for a third party to

compromise customers’ data privacy using strategies that
earlier Merkle Hash Tree based scheme was vulnerable to.
Selecting a random IV for each data file and incrementing

it for each block in the file require a brute-forcing adver-
sary to loop through the range of estimated data values for
each hidden value. That further means that, in order to
find two hidden data values that match the disclosed par-
ent hash value of them, an adversary has to iterate through
all possible combinations of the two values, thereby slowing
down the brute-force attack significantly. Security against
brute-force attacks will be elaborated below.

Given the modifications we made, an adversarial third
party needs to mount a brute-force attack for each redacted
leaf node individually to recover the original data. In other
words, if 8 meter readings in a row are redacted, to reveal the
series of data it would be necessary to perform brute-force
attacks on all possible combinations of the 8 data values. If
the search space for each is narrowed down to 100 possibili-
ties by means of some educated guess, in the worst case 1008

(≈ 253) attempts would be required. Note that since crypto-
graphic hash values do not have order-preserving or homo-
morphic properties, the only way for an attacker to obtain
meaningful information about the redacted values would be
to identify all the values exactly.

A small number of contiguous data blocks may be vul-
nerable to brute-force attack. The exact number at which
a system could be considered vulnerable would depend on
the processing power, storage capacity, and time available
to the adversary. If only 4 consecutive data values need to
be broken with a search space of 100 possibilities, the ad-
versary would require only 1004 attempts (≈ 226) to find
the values corresponding to the hash values. In an imple-
mentation using binary a Merkle Hash Tree, the number of
redacted blocks represented by a node in the tree is always
some power of 2. For instance, redaction of contiguous 19
data blocks may be represented by 3 hash values: one for
16 data blocks, one for 2 blocks and one for 1 block. Hash
values representing few data blocks (1 or 2) can be brute-
forced. Therefore, the system is secure only when a large
number of contiguous data blocks are redacted. Use of the
scheme for use cases with a very small number of redacted
data blocks may allow the third party to recover the hidden
values.

As discussed above, in general, the larger the number of
contiguous nodes to be hidden (which are aggregated into
one or a small number of intermediate hash values in a
Merkle Hash Tree), the more difficult it becomes to retrieve
the original data, as the hash value substituting for hidden
values would be calculated from a larger number of data
blocks. We acknowledge that even with our modification, it
is not difficult for a malicious third-party service provider to
reveal redacted values when only a single or a small number
of data points are hidden. However, in the case of services or
analytics on energy usage data, such a situation is very rare.
Most cases require records of only few hours in a whole day.
In such situations, the number of consecutive values redacted
will be big enough to make brute-force attack infeasible. A
shorter metering interval for the same time duration could
also strengthen the security of the system since the number
of leaf nodes for hash calculation would grow.

Finally, let us consider a real-world scenario in which data
file containing daily records is logged in 5-minute interval
(288 meter readings per day in total). When meter readings
corresponding to the first half of the day (144 readings) are
redacted, an adversary needs to determine 2 hash values
via brute-force: one corresponding to 128 data blocks, and



one for 16 data blocks. Even if the search space for each
meter reading could be narrowed down to 100 possibilities,
the number of attempts required to compromise a major
portion of the hidden data would be 100128(≈ 2850), which
is highly infeasible and can discourage attacks.

4. IMPLEMENTATION
This section discusses the proof of concept of the proposed

scheme based on the Green Button data model [6]. Green
Button is a customer-centric approach to sharing energy us-
age data, and it is attracting broad attention in the energy
industry. Considering the success of Green Button and the
fact that its philosophy of customer involvement matches
ours, we decided to use the Green Button data model as
the foundation of our scheme. We first overview Green But-
ton and its data model and then discuss its limitations with
respect to our goals. We then discuss our prototype imple-
mentation using Java.

4.1 Green Button

4.1.1 Overview
Green Button [6] is based on the idea that consumers

should be able to securely download and manage their own
easy-to-understand energy usage information from their util-
ity or electricity supplier. It is an industry-led effort in re-
sponse to a White House call-to-action to provide customers
with easy access to their energy usage data in a consumer-
friendly and computer-friendly format via a “Green Button”
on electric utilities’ websites.

Green Button provides a standard data format that in-
cludes information types like fifteen-minute load profile, hourly
load profile, daily load profile for the past month or year,
monthly summary data, etc. The data is present in a stan-
dard XML format which allows companies to develop ser-
vices to provide value-added insights, recommendations, and
controls for consumers using their energy usage informa-
tion. Green Button allows customers to receive informa-
tion through two mechanisms: Green Button Download My
Data and Green Button View My Data. Download My Data
downloads an XML Green Button format file, while clicking
View My Data renders the Green Button file in the browser
using a standard XSLT (EXtensible Stylesheet Language)
file.

Green Button is gaining popularity. At least 5 utilities,
including Pacific Gas and Electric (PG&E) [12] and San
Diego Gas and Electric (SDG&E) [13], have implemented it
on their websites, 30+ have made commitments, and 50+
companies either have developed or are developing applica-
tions based on Green Button. Many Web-based and smart-
phone applications, like Leafully [8], and EnergyAITM[2], are
using Green Button data to provide specialized services to
consumers.

4.1.2 Data Model
The Green Button data format is based on the North

American Energy Standard Board’s (NAESB) Energy Ser-
vices Provider Interface (ESPI) XML standard [10]. The
standard specifies an XML data structure for storing and
communicating energy usage information. The Atom Syn-
dication Format [15], also used by websites for Web feeds and
updates, is used to package Green Button data into XML.
Each class of energy usage data is present in an atom : entry

element in a Green Button file; each entry has a 128-bit Uni-
versally Unique IDentifier (UUID). The data for the class is
present in the atom : content type within the atom : entry
element. There are other element types within atom : entry
element that are used to store metadata like the relationship
of the data to other data in the file (atom : link).

The Green Button data model is inherently hierarchical
and includes the concept of collections. Figure 5 presents the
UML (Unified Modeling Language) diagram of the Green
Button information model, which shows the relationships
among classes. The figure illustrates proposed classes along
with existing classes. Next, we briefly discuss the roles of
relevant existing classes to provide a context for our modi-
fications. Roles presented below are also mentioned in the
ESPI XSD (XML Schema Document) file [5].

• UsagePoint is the root element of the data model. It is
a logical point on a smart grid network at which con-
sumption is either physically measured (e.g., metered)
or estimated (e.g., unmetered street lights).

• ElectricPowerUsageSummary, as the name suggests,
includes the summary of electric power usage. It can
include billing period, total cost of the current billing
period, cost during the previous billing period, data
related to last year’s consumption, etc.

• MeterReading represents a meter at a usage point. It
does not contain any data and links UsagePoint with
energy usage data values from a meter.

• ReadingType specifies the characteristics associated with
the readings included in a meter reading. It can in-
clude the unit of the data values (e.g., kWh), the cur-
rency type associated with the cost, the quality of the
reading, etc.

• IntervalBlock contains a set of readings, arranged in a
time sequence, of the same ReadingType.

• IntervalReading specifies a value measured by the me-
ter or other asset. It can include the cost, value in units
(specified in ReadingType), and date and duration of
the reading.

4.1.3 Limitations
Green Button has been developed only for information

exchange, and therefore it defines only the data model. In
other words, authenticity verification and privacy preserva-
tion are not in its primary scope.

Currently, customers downloads their energy usage data
from the utility website and, to use other online services,
they have to disclose the downloaded Green Button data file
to a service provider. The service provider has no method
of verifying whether the energy usage data provided by a
customer have not been tampered with or forged. Since
service providers cannot be convinced of the authenticity of
the data, the range of possible usage of the data could be
limited. For instance, a service provider would hesitate to
use the data for accounting or billing purposes.

The concept of a digital signature is not part of Green
Button’s specification. Even though it could be used with
a signing scheme, such as XML Signature [18], the regular
digital signature scheme would only allow data sharing in



an all-or-nothing manner. In other words, redaction invali-
dates the signature, and therefore a customer has to disclose
the entire energy usage data in a Green Button data file to
the service provider, limiting the customer’s ability to con-
trol the amount of data disclosed and giving rise to privacy
issues, as discussed earlier.

To overcome those limitations, we propose a modifica-
tion of the Green Button schema. Our enhancement to the
schema is discussed in the next section.

4.2 Enhanced Green Button Data Model

Figure 5: UML Class Diagram of the Proposed
Green Button Information Model

Figure 5 presents our additions to the existing Green But-
ton data model, which are explained below. We add 4 data
classes to support the design discussed in Section 3.2. A
sample XML of each element is presented in Appendix A.
Our aim here is to demonstrate one possible, functional im-
plementation to encourage further exploration for such ex-
tensions of Green Button.

• SignatureInformation contains the signature of the root
node of the Merkle Hash Tree and specifies the algo-
rithm used to create the signature (e.g., SHA1withRSA).

• HashInformation contains information about the hash
algorithm used to construct the Merkle Hash Tree. It
includes the algorithm used to create the digest (e.g.,
HmacSHA1) and the Initialization Vector (IV) value
for the file.

• ElectricPowerUsageSummaryHash contains the hash
value of all power usage summary elements. We be-
lieve that the summary of the usage data is sensitive
and that the user should have the option of hiding it
from the third party if desired. This element is present
only if the summary element has been redacted.

• IntervalHash contains a hash value used for the Merkle
Hash Tree calculation (see Figure 3) when a customer
wants to hide a certain portion of the included energy
usage data from untrusted parties. It also contains
the time and duration of the hidden energy usage data
represented by the hash value and the number of blocks
hidden by the hash. Such additional information is
used to determine the location of the corresponding
hash value in the Merkle Hash Tree and is useful in
reconstructing the tree for data verification.

4.3 Prototype System
We implemented the entire system in Java 7. To parse

and modify the Green Button XML file, we used JAXB 2.2
(Java Architecture for XML Binding). To prevent malicious
parties from modifying any sections of the file (e.g., Usage-
Point values), we included all the data in the Green Button
XML file in the Merkle Hash Tree calculation as leaf nodes
of the tree (Figure 3). For instance, each value of each ele-
ment of ReadingType is represented as a data block during
calculation of the tree. In IntervalReading, the data for the
timePeriod, cost, and value elements are concatenated (with
a delimiter) to form one single data block for the tree. For
keyed hash functionality, we used HmacSHA1. It can be
easily replaced with any other scheme. We used publicly
available standard schema definitions (atom.xsd, xml.xsd,
XMLSchema.dtd, and datatypes.dtd) along with Green But-
ton’s schema definition of a draft version.

The implementation consists of 3 modules that handle the
enhanced Green Button data, including one each for Utility,
Repository, and Third Party. Each module’s functionality
is described below.

• Data signing module for Utility: Given Utility’s pri-
vate key and a Green Button data file created in a
standardized way, this module calculates Merkle Hash
Tree according to the algorithm described in Section
3.2 and makes a digital signature on its root hash value.
The module writes the relevant data to the proposed
elements SignatureInformation and HashInformation
in the modified Green Button XML file.

• Data redaction module for Repository: As inputs, this
module takes the Green Button file containing util-
ity’s signature and a request from a customer indicat-
ing how much information he or she wants to hide.
It parses the data file, redacts the data as requested
by the customer, and calculates hash values that re-
place the redacted parts. The module removes val-
ues from the IntervalReading and ElectricPowerUsage-
Summary elements and inserts IntervalHash and Elec-
tricPowerUsageSummaryHash elements in the XML.

• Data verification module for Third Party: This mod-
ule takes the data file provided by Repository, which
may be redacted. It calculates the root hash value and
verifies it against the utility’s signature.



Data Original No. of Signing No. of Interval Redaction Redacted Verification
(5 min File Interval Time Readings Time File Size Time
interval) Size Readings (ms) Hidden (%) (ms) (%) (ms)

26,351 (25%) 7,566 25.0 MB (94%) 3,174
1 Year 26.5 MB 105,406 5,072 52,703 (50%) 9,037 16.7 MB (63%) 2,865

79,054 (75%) 9,797 8.3 MB (31%) 2,519
2,232 (25%) 2,377 2.1 MB (95%) 1,836

1 Month 2.2 MB 8,928 2,447 4,464 (50%) 2,339 1.4 MB (63%) 1,717
6,696 (75%) 2,283 718 KB (32%) 1,500

72 (25%) 922 77.9 KB (100%) 897
1 Day 77.6 KB 288 985 144 (50%) 921 56.0 KB (72%) 863

216 (75%) 915 32.4 KB (41%) 798
3 (25%) 751 10.5 KB (127%) 756

1 Hour 8.3 KB 12 790 6 (50%) 766 9.9 KB (119%) 751
9 (75%) 746 8.6 KB (104%) 750

Table 1: Prototype Performance

4.4 Performance Evaluation
This section discusses the performance of the three pro-

totype modules. We used a data set provided by EnerNOC
[4]. The data consist of 5-minute electricity consumption
figures for anonymized commercial and industrial sites for 1
year. For experiments with smaller amounts of data (e.g.,
1-month data and 1-day data), we manually extracted part
of the 1-year data. HmacSHA1 was used for calculating a
Merkle Hash Tree, and SHA1withRSA was used to sign the
root hash.

The experiments were conducted on 64-bit Ubuntu 12.04
with kernel 3.2.0-49 and Java 1.7.0 25. The hardware in-
cluded Intel Core2Duo 2.13 GHz and 4 GB RAM. The per-
formance metrics are presented in Table 1. Each figure in
the table is the average of results over 5 different data files
of each type. Each measurement includes time for compu-
tation as well as disk I/O. Standard deviation is at most 5%
of each average value shown in the table.

On a typical desktop PC, the system can complete the
signing for 1-year interval data in 5 seconds, redact 75% of
the data in 10 seconds, and verify the data in 3 seconds. The
time for redaction may seem long, but because it is done
on a repository that stores and handles data for a single
customer, it is not a performance bottleneck. While the
data were being processed, the memory usage was always in
the range of 11 MB and 110 MB. Thus, we believe that the
system can be practically implemented.

Finally, we briefly analyze the trends in the results. As ev-
ident from Table 1, for small files, the redaction time doesn’t
vary much with the amount of data redacted, although we
see some difference for 1-year data. We found that tree cal-
culation and removal of data from the XML consume a ma-
jor amount of the redaction time. The hash values present
in the redacted file are of nodes at different levels in the tree.
As a consequence, data verification takes less time, as the
system has to calculate fewer hash values to reconstruct the
tree. This effect is more evident in files that have a large
amount of redacted data. For very small files, the redacted
files are larger than the original files. The reason is the
introduction of the SignatureInformation, HashInformation
and IntervalHash elements, which take up more space than
the redacted data did. The IV in our prototype is generated
using SecureRandom in Java. Sometimes, SecureRandom

waits to be initialized with a random seed, causing delays in
signing the file. In practice, that should not be a problem
unless the utility is asked to provide the signed data in real-
time. For most of the use scenarios, the Utility can sign the
file beforehand and store it.

5. APPLICATION FOR DEMAND-RESPONSE
AGGREGATION SERVICE

In this section, to demonstrate one example of a third-
party service based on our framework described in Section
3, we discuss the customer-centric design of a DR aggrega-
tion service model. However, applicability of the proposed
architecture is not limited to it, and another application will
be explored in our future work.

At a high level, demand-response aggregation (DR aggre-
gation) service providers, also called DR aggregators, medi-
ate communication between utility companies and electricity
consumers who participate in some demand-response pro-
gram. When a utility wants to curtail electricity demand,
it sends a demand-response request (or a demand-response
signal) to a DR aggregator. The DR aggregator then sends
a curtailment request to a subset of its customers. The cus-
tomers’ performance (i.e., how much they actually succeeded
in reducing energy consumption) is reported to and evalu-
ated by the DR aggregator, and, based on the performance,
each customer receives an incentive from the DR aggrega-
tor. The DR aggregator reports the aggregate amount of
curtailment to the utility, which pays incentives according
to the DR aggregator’s performance and the agreement be-
tween the utility and the DR aggregator. Additionally, DR
aggregation services often involve incentives for each cus-
tomer. Therefore, both privacy preservation for customers
and data verifiability for DR aggregators are required, and
are accomplished under our design.

We next give an overview of commonly used demand-
response programs and identify the data required for DR
aggregation services. After that, we detail the customer-
centric DR aggregation service model based on our proposal.

5.1 Overview of Demand-Response Programs
Nowadays, many utility companies provide either or both

of two types of services: CBP (Capacity Bidding Program)
and DBP (Demand Bidding Program). Detailed informa-



tion can be found in [35], [34], [39], and [38]. Under CBP
and DBP, typically a DR aggregator submits a curtailment
commitment to the electricity utility, and sends curtailment
requests to DR participants (i.e., end customers) when a
demand-response event is announced by the utility. Based
on the actual curtailment accomplished and the committed
amount, the DR aggregator gets incentives from the utility.
One big difference between the two bidding programs is that
with DBP a DR aggregator will not be charged a penalty
even when it underperforms but with CBP, a penalty may
be charged. To avoid a penalty under CBP, a DR aggre-
gator may want to accurately estimate the amount of con-
sumption of each customer based on its past usage data,
so that it can minimize the risk of penalty. In both CBP
and DBP, to assess the performance of each customer after
a demand-response period ends, a DR aggregator needs to
know how much each customer curtailed usage during the
demand-response event.

There are also other types of demand-response services.
Direct Load Control (DLC) allows utility companies (or DR
aggregators) to directly turn customer equipments, such as
HVAC ON or OFF [36]. DLC is usually agreement-based,
making usage prediction and collection of actual energy us-
age data unnecessary. Dynamic Pricing Model, another pop-
ular type of DR program, usually sends just price informa-
tion to customers and does not need to collect data from
them. Thus, in this work, we focus on DR aggregation ser-
vices under CBP and DBP.

5.2 Data Required for Demand-Response Ag-
gregation Services

In this section, based on the mechanisms of current demand-
response programs, we discuss what information is required
and sufficient for providing demand-response aggregation
services. For both CBP and DBP, one essential requirement
is to collect energy usage data to assess each customer’s
performance. Such performance evaluation is usually done
based on the difference between the “baseline” energy con-
sumption and the actual energy consumption of the cus-
tomer during the demand-response event period. The simple
but common strategy for calculating such a baseline is called
X-day average baseline [37], which calculates the baseline
by averaging the energy consumption patterns of the past
X similar days. Given such an assessment procedure, the
information that a DR aggregator needs to know is the ac-
tual energy consumption during the demand-response event
and also the energy consumption data for the same (or sim-
ilar) time slots on the past X similar days. As mentioned
earlier, such energy usage data must be verifiable to a DR
aggregator so that it can detect cheating customers or any
other malicious behavior.

We also note that, for the performance assessment by DR
aggregators, real-time data are not necessarily required. For
instance, as long as the DR event period or participant in-
formation is appropriately recorded by an aggregator, eval-
uation and accounting can be done in batch, for example,
once a day. Because the frequency of DR events is usually
low, (for instance, at most 24 hours a month in the case of
CBP by PG&E [34]) that claim holds.

The data for calculating such a baseline can also be used
to select customers to whom a DR aggregator sends cur-
tailment requests. Especially in the case of CBP, DR ag-
gregators are motivated to predict which customers will opt

in and perform well as accurately as possible to minimize
the risk of penalty being charged by a utility and at the
same time, minimize the cost for DR aggregators, such as
the incentive that needs to be paid to DR participants. Note
that to determine such specific set of customers for the DR
program, historical data must be collected in advance of a
demand-response event.

5.3 Customer-centric Demand-Response Ag-
gregation

Based on the above observations so far, in this section
we propose a novel demand-response aggregation service ar-
chitecture that emphasizes customer centricity. We assume
that a utility’s smart meters can measure and record electric-
ity consumption with a short enough interval (e.g., 1 minute
or 5 minutes) to meet the granularity required for typical DR
aggregation services. While measuring with that frequency
is not problematic for existing meters, frequent reporting
may eat up the network bandwidth of an AMI and a util-
ity’s back-haul network, but our scheme does not require
real-time reporting. Batch reporting, e.g., hourly or daily,
would be acceptable and is practical, as discussed earlier.

Figure 6: Overview of Customer-centric Model for
Demand-Response Aggregation Service

The customer-centric model for demand-response aggre-
gation is illustrated in Figure 6. The architecture is based on
the one discussed in Figure 1, and Figure 1’s Third Party
corresponds to Figure 6 DR Aggregator. We provide the
details of the procedure and data flow below.

1. The Utility’s meter at the Customer’s site sends usage
reports periodically (or on a real-time basis, e.g., ev-
ery 15 minutes) to the Utility. This reporting is done
regardless of whether a DR event is active or not.

2. The Customer periodically (e.g., hourly or daily) down-
loads energy usage data along with the Utility’s digital
signature on the Merkle root hash value calculated as
shown in Figure 3 on demand or at the end of a DR
event day. Alternatively, the download can be done au-
tomatically by the Trusted Repository. In either case,
downloaded records are stored on the Trusted Repos-
itory in Figure 6.

3. DR event information (i.e., a curtailment request) is
sent to the Customer by the DR Aggregator. For in-



stance, in the case of a “Day-ahead” DR program, such
event information is sent the day before the DR event.
In the case of a “Day-of” program, information is sent
on the day of the event, usually a few hours before the
event’s start time. The Customer has the option to
opt out. Also, if so desired, the DR Aggregator can
request historical data from the Customer when per-
forming candidate selection for the DR event. Such
information is provided by the Customer as a set of
redacted energy usage records. Optionally, to encour-
age customers to provide more information, the DR
Aggregator can offer extra incentives according to the
amount of data provided. (For instance, the offer can
be “$Y extra for the last X-day record.”) Providing
more information to the DR Aggregator may have a
higher privacy risk, but such a trade-off can be bal-
anced by the customer.

4. The Customer executes DR (energy usage curtailment),
unless he or she opts out.

5. After the DR event ends, the DR Aggregator asks the
Customer to send energy usage data. Some historical
data for baseline calculation can also be requested by
the DR Aggregator in one of the ways mentioned in
Step 3. (Requesting historical data at this step might
not be necessary if sufficient data were already col-
lected at Step 3.)

6. In response to the usage report request, the Customer
sends the minimal amount of energy usage data that
corresponds to the DR event period. At the same time,
given the incentive offer from the DR Aggregator, the
Customer decides how much information he or she feels
comfortable providing in exchange for the benefit of
the service. Because there is usually no more than one
DR event a day, customers’ decisions and operations
are required no more than a day. Instead of manually
selecting data to be disclosed, the customer can define
an access control or a data disclosure policy on the
repository for automation.

7. After receiving a usage report and data for the base-
line calculation, the DR Aggregator first verifies Util-
ity’s signature on the energy usage data provided by
the Customer. Then, it calculates the baseline, for ex-
ample by taking the average of energy consumption
data, and evaluates the Customer’s performance. If
Customer redacted too much data and does not meet
the minimal requirement as discussed in Section 5.2,
the DR Aggregator can suspend the transaction until
additional data is provided.

This model does not require installation of an additional me-
tering device by the DR Aggregator, allowing customers to
have more control of data disclosure. Also, communication
between the Utility and the Trusted Repository and between
the Trusted Repository and the DR Aggregator is done using
the modified Green Button schema discussed in Section 4,
while communication of DR event information distribution
(from the Utility to the Customer via the DR Aggregator)
can be done by using other protocols, such as OpenADR
[11]. To support OpenADR, the Customer may be equipped
with an OpenADR client software (i.e., VEN or Virtual End
Node) with additional functionality for interacting with the
Trusted Repository to automate the process.

6. RELATED WORK
Some research has been done on customer-centric (or also

called consumer-centric) smart grid technologies. In [27, 40],
the authors propose a cloud-based approach to deploying
data analytics functionality in a secure, privacy-enhanced
manner. At a high level, in their architecture, consumers
own and manage their own virtual machine in a cloud, called
VHome, to store energy usage data and run analytics. How-
ever, the verifiability of shared data is entirely outside their
scope, and therefore their scheme is not suitable for services
like demand-response aggregation that require trustworthy
data for billing and accounting purposes. In addition, their
scheme needs to involve IaaS providers as well as VHome
SaaS providers in addition to customers and the utility com-
pany. Our scheme has a simpler interaction model and fewer
trust assumptions.

The trusted repository in our scheme may seem similar
to the energy data center proposed in [26]. However, the
main purpose of the energy data center is to consolidate en-
ergy usage data of many customers to facilitate sharing of
anonymized data among utility companies, customers, and
third parties, and therefore is not customer-centric. In ad-
dition, security and privacy guarantees, including customer
consent and protection against cyber attacks, rely largely
on contracts among involved organizations, which are not
systematically enforced. Our goal is to provide security and
privacy guarantees in a cryptographic manner, and control
over such functionality belongs to customers.

Green Button Connect My Data is a service that allows
a customer to authorize a third party to access his or her
Green Button data directly from a utility’s website. The
service doesn’t allow customers to provide selected data to
a third party. The mechanism is based on OAuth 2.0 [7] and
allows the third party to automatically collect all of a cus-
tomer’s energy usage data from a utility without any further
intervention from the customer. The customer has the power
to revoke the access, but that would prevent the customer
from accessing the services of the third party. The scheme
itself is still in development, and very few utility companies
have implemented it, SDG&E being one of them [14].

Use of a Merkle Hash Tree for redactable signatures is
done in a number of different domains. For instance, in
identity management area, it is used to implement minimal-
disclosure identity credentials, which allow a credential owner
to flexibly hide part of identity claims without losing the ver-
ifiability of the identity provider’s digital signature [19]. In
a Web service setting, [21] proposes the use of it in UDDI
authentication. However, to our knowledge, our work is the
first application in energy usage data management. More-
over, we tailored the scheme to meet the security and privacy
requirements that are unique to this context.

Customer-centric data-sharing has also been explored in
other domains. For instance, in the identity management
area, a number of user-centric approaches have been ex-
plored [22, 29]. The schemes have been proposed to mit-
igate the drawbacks of identity provider-centric approaches
that not only give owners of identity credentials little con-
trol over their digital identity, but also could cause privacy
concerns by allowing the central provider to track the own-
ers’ activities in cyberspace. The same trends can be seen
in the e-healthcare domain. The emergence of Personal
Health Record (PHR) systems [9, 33] enhances patients’
control over their own data and privacy in a similar way.



This situation is analogous to that of energy usage data. In
an approach like Green Button Connect My Data, a utility
company, which can be seen as a central entity, can poten-
tially know which third-party service providers a customer
is interacting with. Our system can be seen as a solution to
minimize such privacy concerns.

7. CONCLUSION
In this paper, we presented a customer-centric framework

that enables management and sharing of energy usage data,
extending the well-accepted Green Button data model [6]
in two ways. In order to enhance customer privacy, our
scheme allows redaction of an arbitrary portion of Green
Button data when a customer shares his or her data with
a third-party service provider. The extended schema is still
compatible with the system using the standard schema, such
as visualization using Green Button View My Data [6]. On
the other hand, the presented data, even when some part
is redacted, can be verified and authenticated by any party,
which makes it possible to reliably use the Green Button
data even for billing and accounting purposes. We also
discussed a model of demand-response aggregation service
based on the proposed framework.

One of the major components of our future work is inte-
gration of the proposed mechanisms into a working system.
We are currently in the process of implementing a proto-
type of the customer-centric demand-response aggregation
service. We will also explore other applications, besides
demand-response aggregation services, that can be imple-
mented on top of our customer-centric model. Some ser-
vices, such as sophisticated recommendation services, need
to use statistical or machine-learning techniques, which may
require different privacy-preservation schemes. Another di-
rection would be a mechanism or user interface that assists
customers’ decision making to appropriately balance privacy
and enable them to benefit from services.
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APPENDIX
A. PROPOSED XML ELEMENTS

Here we present a sample of the XML elements we added
to the standard Green Button schema. The purpose of these
elements is discussed in Section 4.2. The id type in the
elements is a UUID for the element.

<entry>
<id>urn:uuid:55673B87-3009-4B05-B5BD-C9E841C7B154
</id>
<content type="">

<ns2:SignatureInformation>
<ns2:SignatureValue>2a444b90bdd8fdeb07352
49cf7169826588c8a85e5ea5d090e7e332b91f580
a71620f50d4a05ee88facec0857cfd125c01209fa
c642006ebb8f76b82c4e5bc42
</ns2:SignatureValue>
<ns2:SignatureAlgorithm>SHA1withRSA
</ns2:SignatureAlgorithm>

</ns2:SignatureInformation>
</content>

</entry>

Figure 7: SignatureInformation Element

<entry>
<id>urn:uuid:CF2BB894-FAAF-4408-95C2-559091C0D0D0
</id>
<content type="">

<ns2:HashInformation>
<ns2:HashAlgorithm>HmacSHA1
</ns2:HashAlgorithm>
<ns2:InitializationVectorValue>8ea31f5b3d
d56ec30ebd014c2da10029aeb34830974d69d5dae
d34ce85a179fdf936c043d5c581823542671913d4
b4714fe2a96a756b9a035998b3d3127987eb
</ns2:InitializationVectorValue>

</ns2:HashInformation>
</content>

</entry>

Figure 8: HashInformation Element

<ns2:IntervalHash>
<ns2:timePeriod>

<ns2:duration>9830400</ns2:duration>
<ns2:start>1335192900</ns2:start>

</ns2:timePeriod>
<ns2:value>b00ab83b5c2cbc222f472ede0bd73520d1bdbb
0c</ns2:value>
<ns2:hiddenBlocks>32768</ns2:hiddenBlocks>

</ns2:IntervalHash>

Figure 9: IntervalHash Element

<entry>
<id>urn:uuid:5746036f-3d85-4cdb-a2be-c70a0e53a30f
</id>
<link rel="self" href="RetailCustomer/41/UsagePoi
nt/01/ElectricPowerUsageSummary/01"/>
<link rel="up" href="RetailCustomer/41/UsagePoint
/01/ElectricPowerUsageSummary"/>
<title>Usage Summary</title>
<content>

<ns2:ElectricPowerUsageSummaryHash>
<ns2:value>7338865b07eccd5524bb5cd9230ae9
bf50f65f94</ns2:value>

</ns2:ElectricPowerUsageSummaryHash>
</content>
<published>2013-04-04T03:35:38Z</published>
<updated>2013-04-04T03:35:38Z</updated>

</entry>

Figure 10: ElectricPowerUsageSummaryHash Ele-
ment

• SignatureInformation contains two elements, namely
SignatureValue and SignatureAlgorithm (Figure 7). Sig-
natureValue stores the signature value of the signed
Merkle root hash value. SignatureAlgorithm specifies
the cryptographic algorithm identifier that the data is-
suer uses when signing.

• HashInformation contains two elements: HashAlgorithm
and InitializationVectorValue (Figure 8). HashAlgo-
rithm specifies the keyed hash algorithm used to cal-
culate the Merkle Hash Tree. InitializationVectorValue
contains the IV for the file as explained in Section 3.2.2.

• IntervalHash stores the hash value of a node in the
Merkle Hash Tree (Figure 9) that corresponds to redacted
data. timePeriod stores the time period of a single or a
sequence of redacted child leaf nodes. The hash value is
stored in value, and hiddenBlocks contains the number
of data blocks redacted by this element.

• ElectricPowerUsageSummaryHash stores the hash value
of XML data under the ElectricPowerUsageSummary
element (Figure 10) when the contents of the element
in the original XML need to be hidden. The id, link,
and title values are taken as is from the summary ele-
ment.


