
UCAIug OpenSG OpenADE Task Force

OpenADE 1.0 Service Definition - Web Services Extension

OpenADE 1.0 Service Definition - Web Services Extension
Version: Draft v0.8
Release Date: 7/28/2010
Acknowledgements

The following individuals and their companies have contributed and/or provided support to the work of the OpenADE 1.0 Service Definition - Web Services Extension:

· Chad Maglaque from Microsoft

· Dave Mollerstuen from Tendril Networks

· Gerald Gray from CIMple Integrations

· Mark Ortiz from Consumers Energy

· Shawn Hu from Xtensible Solutions / SCE /Consumers Energy
· Steve Van Ausdall from Xtensible Solutions / SCE

The OpenADE Task Force wishes to thank all of the contributors to OpenADE, especially the above-mentioned individuals and their companies for their support of this important endeavor, as it sets a key foundation for an interoperable Smart Grid.

Document History

Revision History

Date of this revision: July 28, 2010
	Revision Number
	Revision Date
	Revision
By
	Summary of Changes
	Changes marked

	0.1
	4/8/10
	Gerald R. Gray
	Initial draft discussion version.
	N

	0.2
	4/14/10
	Gerald R. Gray
	Added example wsdls and xsds provided by Shawn Hu; example SOAP envelope structure
	N

	0.3
	4/15/10
	Steve Van Ausdall
	Additional cleanup and updates
	N

	0.4
	4/20/10
	Steve Van Ausdall
	Changes from reviews with SD team
	N

	0.5
	4/20/10
	Gerald R. Gray
	Added reference to previous AMI-ENT work; additional clean-up from team discussion
	N

	0.6
	4/22/10
	Shawn Hu & Mark Ortiz
	Added detailed WSDL information
	N

	0.8
	7/28/10
	Wayne Dennison
Steve Van Ausdall
	Additional Cleanup and Updates from F2F meeting and Review
	N

Open Issues Log
Last updated: June. 8, 2010
	Issue
	Issue Date
	Provided By
	Summary of the Issue

	
	
	
	

Contents

51
Introduction

51.1
Rights / Management / Governance

51.1.1
Intellectual Property Rights

51.1.2
CIM Object Models

61.1.3
Web Service Definitions

61.2
Referenced Specifications

61.3
Referenced Guidance

61.4
Namespaces

72
Web Services

71.1
Service Structure

71.2
Service Naming Convention

81.3
SOAP Binding

103
Versioning

104
Service Operations

104.1
Provider (Utility) Operations

114.2
Service Consumer (3rd Party) Operations

114.3
Large Size Data Exchange

114.4
Service Discovery

 List of Tables

11Table 1: Provider Service Operations

11Table 2: Consumer Service Operations

1 Introduction
This document contains only the extensions necessary to the OpenADE Common specification to build a WS-I Basic Profile 1.1 implementation of the OpenADE Requirements Specification. The “OpenSG OpenADE SD – Common” document specifies the structure of the usage data payload transferred using the services defined in this specification.
These extensions define a collection of services, using SOAP over HTTPS to send and receive requests and information in XML. This architecture provides secure access to scalable methods and data resources hosted by the provider. All data is secured at the user level, so that access to individual user data can be provided or revoked to external services, and other users’ data will still be protected.
1.1 Rights / Management / Governance
1.1.1 Intellectual Property Rights

This document and the information contained herein is provided on an "AS IS" basis. UCAIug DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

UCAIug requests any party that believes it has a patent claim that would necessarily be infringed by implementations of this UCAIug work, to notify UCAIug immediately, so that fair and reasonable licensing terms can be negotiated. UCAIug invites any party aware of applicable undisclosed patent claims to contact the UCAIug. UCAIug may include such claims on its website, but disclaims any obligation to do so.

UCAIug takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this UCAIug recommendation, can be obtained from the UCAIug. UCAIug makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

1.1.2 CIM Object Models
The recommendations herein build on work owned by the IEC. Required extensions identified in this recommendation will be submitted to the IEC, and will be tracked for inclusion in the model.

Information on the management of rights and governance can be found at the page below.
http://www.iec.ch/tctools/patent-guidelines.htm
1.1.3 Web Service Definitions

If necessary, UCAIug is willing to work with standards development organizations to incorporate additional aspects of this recommendation into standards, including the specification of how to use profiled (restricted) CIM objects within the SOAP over HTTP environment, and possibly the web service definitions themselves.
1.2 Referenced Specifications
· [1] IEC CIM (TC 57 61968/61970) - http://tc57.iec.ch
· [2] OAuth - http://oauth.net/
· [3] WS-I Basic Profile Version 1.1 http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
· [4] OpenSG OpenADE SD – Common
http://osgug.ucaiug.org/sgsystems/OpenADE/Shared%20Documents/Forms/AllItems.aspx?RootFolder=%2Fsgsystems%2FOpenADE%2FShared%20Documents%2FService%20Definition%2FOpenADE%201%2E0%20Service%20Definition
· [5] IEC TC57 WG14 61968-1-2 – Profile for use of CIM with WS-I Basic Profile
· [6] OpenADE B&UR 1.0 - http://osgug.ucaiug.org/sgsystems/OpenADE/Shared%20Documents/Forms/AllItems.aspx?RootFolder=%2fsgsystems%2fOpenADE%2fShared%20Documents%2fBusiness%20and%20User%20Requirements

· [7] OpenADE SRS 1.0 - http://osgug.ucaiug.org/sgsystems/OpenADE/Shared%20Documents/Forms/AllItems.aspx?RootFolder=%2fsgsystems%2fOpenADE%2fShared%20Documents%2fSRS
1.3 Referenced Guidance
· [G1] 3PDA – Security Profile for Third Party Data Access (ASAP-SG)
http://osgug.ucaiug.org/utilisec/Shared%20Documents/Forms/AllItems.aspx?RootFolder=%2futilisec%2fShared%20Documents%2fThird%20Party%20Data%20Access%20Security%20Profile
· [G2] Service Definitions Technical Guide http://www.smartgridipedia.org/images/a/af/AMI_ENT_Step-By-Step_Modeling_and_Artifacts_Generation_Guidelines.doc
· [G3] UDDI: www.uddi.org
1.4 Namespaces
The subject of namespaces is important, because the namespace identifies the domain managing the definitions of protocol resources and formats. OpenSG proposes to use a temporary namespace until the final destination is identified. In any case, namespaces already defined elsewhere and used directly within reference service definitions will remain where they are, and will reference the identified body.
The proposed temporary namespace for definitions to be used in early implementations is below. (Service definition will be updated with the final approved namespaces.)

http://osgug.ucaiug.org/ns/2010/06/wsoade
2 Web Services
The purpose of the section is to provide a set of recommendations for a Web Service definition based on OpenSG’s Service Definition design patterns and Web Services Description Language (WSDL) from W3C. The audiences of the document are assumed to have basic knowledge of Web service and XML schema.
1.1 Service Structure
W3C WSDL (v1.1) is followed to define OpenADE Web services. The services are made of two parts with following tags.

· definitions

· types

· message

· portType

· operation

· binding

· port

· service

The web service design practices are summarized below:

· Standard SOAP envelope is used to avoid extra message enveloping.

· XSD as data type is imported instead of being embedded for better version control
· Wire signature issue is avoided by redefining element names such as CreatedConsumption and ChangedConsumption using a single XSD Consumption complexType

· Wrapped document WSDL style is used
· Operation name follows the Verb + Noun naming convention which can potentially avoid contend-based routing
1.2 Service Naming Convention
Interfaces are defined using a specific set of verbs and nouns using Web service technology. Each service then has a subset of operations that are associated with information objects. Each operation is named following IEC 61968-1 verb + noun (information objects). The detail service and operation naming convention is covered in OpenSG Service Definition Technical Guide [G2]. In summary, the naming conventions are:

· Service name:

To follow <Service pattern name>+<Information Object> such as ReceiveConsumption

· Operation name:

To follow <Operation pattern name>+<Information Object> such as CreatedConsumption

1.3 SOAP Binding
The document style using SOAP body is the most common practice in WSDL design. It can fully utilize the benefits of an XML schema for payload validation.

Both <soap:binding> and <soap:operation> styles are defined as “document”. Also <soap:body> is used for both input and output operations. Input data type is typically a payload such as Consumption data definition. Output data follows a common XSD (OutputData.xsd) that is included for each operation in a WSDL. Each operation’s OutputData adheres to the following XSD structure and is used as an acknowledgement return or a fault return during a synchronous call.

[image: image1.emf]
The wsdl:operation is named the same as the input element name. As a result the WSDL is a wrapped document style WSDL. Wrapped document style originates from Microsoft to mimic a RPC style. In a RPC style, an XML payload is wrapped by its operation name.
Here is the WSDL section that illustrates the wrapped document style. Note the element name is the same as the operation name (CreatedConsumption):

One issue with the wrapped document style is when adding an “operation” like element in an XSD that may break semantics in data definition. There can be also maintenance issue in a case of a new operation being added which causes not only WSDL change but also XSD update. Therefore the recommendation is to create the operation like elements within WSDL and decouple the original XSD element. Here is an example.

Note that the operation-like element name is defined within wsdl:types section. This element references a complexType within Consumption.xsd which does not need a change for this style.
3 Versioning
Versioning will be handled in the manner specified in the OpenADE Common document.

Additionally, WSDL targetNamespace needs to be updated whenever a change occurs to an XSD namespace. In other words, a major XSD update will result in a WSDL namespace change and minor XSD update (no namespace change) will have no impact on WSDL namespace.
4 Service Operations
The tables below list the service operations proposed in order to meet the requirements. These services will be fully specified in a subsequent publication.
4.1 Provider (Utility) Operations

These operations are implemented by the provider of the data exchange service.
	Operation
	Inputs
	Outputs
	Description

	GetServiceStatus
	ResourceList
	ServiceStatus
	Synchronously check connectivity and current operational status of the service

	RequestServiceStatus
	ResourceList
	RequestStatus
	Asynchronously check connectivity and current operational status of the service

	ReceiveServiceStatus
	ServiceStatus
	RequestStatus
	Receive result of status check initiated by Utility

	CreateEnrollment
	Customer, Key, ResourceList
	ActivityRecord
	Initiate authorization of 3rd Party customer to receive Utility customer resources

	CreatedEnrollment
	Customer, ResourceList
	ActivityRecord
	Notify Utility of new authorization completion (future)

	CancelEnrollment
	Customer, ResourceList
	ActivityRecord
	Initiate cancel authorization of customer resources

	CancelledEnrollment
	Customer, ResourceList
	ActivityRecord
	Notify Utility of authorization cancellation

	GetActivityRecord
	ID
	ActivityRecord
	Receive status of an asynchronous request from Utility

	GetResource
	Format
	Resource
	Transfer customer usage information data (or other resources, future)

	ReceiveActivityRecord
	ResourceList
	RequestStatus
	Notify Utility of current status of pending transfers

Table 1: Provider Service Operations

4.2 Service Consumer (3rd Party) Operations
These operations are implemented by the consumer (client) of the data exchange service.

	Operation
	Inputs
	Outputs
	Description

	GetServiceStatus
	ResourceList
	ServiceStatus
	Synchronously check connectivity and current operational status of the service

	RequestServiceStatus
	ResourceList
	RequestStatus
	Asynchronously check connectivity and current operational status of the service

	ReceiveServiceStatus
	ServiceStatus
	RequestStatus
	Receive result of status check initiated by 3rd Party

	CreateEnrollment
	Customer, Key, ResourceList
	ActivityRecord
	Initiate authorization of Utility customer to receive 3rd Party customer resources (future)

	CreatedEnrollment
	Customer, ResourceList
	ActivityRecord
	Notify 3rd Party of new authorization completion (future)

	CancelEnrollment
	Customer, ResourceList
	ActivityRecord
	Initiate cancel authorization of customer resources

	CancelledEnrollment
	Customer, ResourceList
	ActivityRecord
	Notify 3rd Party of authorization cancellation

	GetActivityRecord
	ID
	ActivityRecord
	Receive status of an asynchronous request from 3rd Party

	CreatedResource
	ResourceList
	RequestStatus
	Notify 3rd Party that resources were created or updated

	CreatedResource
	ID
	RequestStatus
	Notify 3rd Party that new and updated resource files are available

Table 2: Consumer Service Operations

4.3 Large Size Data Exchange

It is recommended to use MTOM for large data transaction. MTOM stands for Message Transmission Optimization Mechanism. It is often used for a binary data transaction and usually used with XOP (XML-binary Optimized Packging). Using MTOM, the SOAP binding has no significant change in comparison with the conventional SOAP binding in document style. Currently there is no requirement on a large size payload data transaction. Should this be a case in the future, a new operation based on MTOM will be provided.
4.4 Service Discovery
Universal Description, Discovery, and Integration (UDDI) is a specification designed to allow businesses to enter details about themselves and the services they provide in a registry. Searches can be typically be performed by company name, specific service, or types of service. This allows companies providing or needing web services to discover each other, define how they interact over the Internet, and share information in a standardized fashion.
Since a WSDL defines the XML grammar for describing services as collections of communication endpoints capable of exchanging messages, utilities and third parties can publish WSDLs for services they provide and links to the WSDLs are usually offered in a company’s profile in a UDDI registry.
<wsdl:types>

 <xs:schema targetNamespace="http://<namespace prefix>/2009/09/ConsumptionIn">

	<xs:import namespace="http://<namespace prefix>/2009/09/Consumption" schemaLocation="Consumption.xsd"/>

	<xs:element name="CreatedConsumption" type="typeOrig:Consumption"/>

	<xs:element name="ChangedConsumption" type="typeOrig:Consumption"/>

</xs:schema>

… …

</wsdl:types>

 … …

<wsdl:message name="CreatedConsumptionInput">

	<wsdl:part name="CreatedConsumption" element="typeIn:CreatedConsumption"/>

</wsdl:message>

… …

<wsdl:portType name="Consumption">

	<wsdl:operation name="CreatedConsumption">

		<wsdl:documentation>CreatedConsumption</wsdl:documentation>

<wsdl:input name="CreatedConsumptionInput" message="tns:CreatedConsumptionInput"/>

		<wsdl:output name="CreatedConsumptionOutput" message="tns:outputData"/>

		<wsdl:fault name="faultInfor" message="tns:faultReturn"/>

		</wsdl:operation>

</wsdl:portType>

Concrete part

Abstract part

Draft v0.8, 7/28/10
Page 4 of 12

© Copyright 2010 OpenSG, All Rights Reserved

