
© 2008 Carnegie Mellon University

Software Architecture
Thoughts for the System
Security Design

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

James Ivers
April 17, 2007

2

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Role of Software Architecture

If the only criterion for software was to get the right answer, we would
not need architectures―unstructured, monolithic systems would suffice.

But other things also matter, like

• modifiability

• time of development

• performance

• coordination of work teams

Quality attributes such as these are largely dependent on architectural
decisions.

• All design involves tradeoffs among quality attributes.

• The earlier we reason about tradeoffs, the better.

3

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Key Topics in Creating a Software Architecture

Scoping the problem

Defining/refining the architecture

Documenting the architecture

Evaluating the architecture

4

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Scoping the Problem

What is being defined in the architecture?

• New features/assets

• Integration between new features/assets and existing systems

• Recommendations for existing features/assets

What constraints are we under?

• Business (e.g., deadlines, cost, or regulatory standards)

• Technical (e.g., existing assets or interfaces)

What are the driving quality attributes?

• Security, modifiability, reliability, performance, usability, etc.

• How do we manage the trade-offs among qualities

How will the architecture be used?

• Basis for implementation

• Detailed analyses

• Contract between component suppliers and acquirers

5

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Key Topics in Creating a Software Architecture

Scoping the problem

Defining/refining the architecture

Documenting the architecture

Evaluating the architecture

6

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

The Architecture Design Process

An architecture design follows (should, really!) this process:

1. Create a measurable specification of quality attribute requirements that
need to be supported by the architecture

2. Evaluate if the current architecture you have fulfills those requirements

3. If not, make some changes to the architecture to improve and repeat
step 2

4. If yes, Lucky you! You are done.

As simple as this may sound, it creates a huge problem …

7

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

The Dilemma of the Architect – 1

A view of possible architectures

Architecture

Decision

Initial architecture
may look like this

There are many
possibilities to

make the
architecture better

Such as this one
…

or this one …

Architect decides

8

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

The Dilemma of the Architect – 2

A view of possible architectures

And the process
repeats …

Until (hopefully) a
solution is found

Unacceptable Architecture

Acceptable Architecture

Solution!

Decision

9

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

… but there are many
more architectures
that have not been

explored!

The Dilemma of the Architect – 3

A view of possible architectures

Unacceptable Architecture

Acceptable Architecture

Solution!

Decision

… or the project
runs out of time!

… and the perfect
solution might be

there

10

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Attribute-Driven Design (ADD) Method

The ADD method is an approach to defining software architectures
by basing the design process on the architecture’s quality attribute
requirements.

It follows a recursive decomposition process where,
at each stage in the decomposition, tactics and architectural patterns
are chosen to satisfy a set of quality attribute scenarios.

ADD
Decomposition

of the architecture

Constraints

Functional requirements

Quality requirements

11

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Steps of the ADD Method

1. Choose the element to decompose.

2. Refine the element according to these steps:

a. Choose the architectural significant requirements.

b. Choose an architectural pattern that satisfies
the architectural significant requirements.

c. Instantiate elements and allocate functionality
from the use cases using multiple views.

d. Define interfaces of the child elements.

e. Verify and refine use cases and quality scenarios
and make them constraints for the child elements.

3. Repeat these steps for the next element. Remember that early
decisions constrain later
decisions. Make those
with the biggest impact
early.

12

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Key Topics in Creating a Software Architecture

Scoping the problem

Defining/refining the architecture

Documenting the architecture

Evaluating the architecture

13

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

View-Based Documentation

All modern approaches to software architecture creation and
documentation are based on views. A general principle for
documenting a software architecture is

Documenting a software architecture is a matter of documenting the
relevant views and then adding information that applies to more than one
view.

++ =

14

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Views

An architecture is a multidimensional construct,
too involved to be seen all at once.

Systems are composed of many structures that show

• modules, their composition/decomposition and mapping
to code units

• processes and how they synchronize

• programs and how they call or send
data to each other

• how software is deployed on hardware

• how teams cooperate to build the system

• how components and connectors work at runtime

• …

Views are representations of structures. We use them to manage
complexity by separating concerns.

15

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

What Is the “Right” Set of Views?

Unlike approaches that prescribe a fixed set of views, we take a
more general approach:

Choose the best views for each situation.

Which views are “right” depends on

1. the structures that are inherent in the software

2. who the stakeholders are and how they will use the documentation

How do stakeholders use documentation?

• education―introducing people to the project

• communication―especially among stakeholders

– architect to developers

– architect to (current or future) architect

• analysis―assuring quality attributes

16

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

But Which Views to Consider?

Module

Decomposition Class/Generalization

Uses

Layered

…

Allocation

Work Assignment

Deployment Implementation

…

17

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Producing
Documentation

Documenting individual views

• Unambiguous notations

• Enough information to support purpose

• Rationale!

Mapping between views

• Reconciling different perspectives to
avoid inconsistencies

• Many analyses require information
found in different views

Standards compliance

• IEEE 1471, ISO/IEC 42010:2007

Etc.

18

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Key Topics in Creating a Software Architecture

Scoping the problem

Defining/refining the architecture

Documenting the architecture

Evaluating the architecture

19

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Why Evaluate an Architecture?

Because so much is riding on it!

• An unsuitable architecture can precipitate disaster.

• Architecture determines the structure of the project.

Because we can!

• Repeatable, structured methods offer a low-cost risk mitigation capability
that can be employed early in the development life cycle.

• Making sure an architecture is the right one simply makes good sense.

Architecture evaluation should be a standard part of every
architecture-based development methodology.

20

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Evaluation Techniques

There are a variety of techniques for performing architecture
evaluations, each having a different cost and providing different
information.

These techniques fall into two broad categories:

1. questioning techniques

- are applied to evaluate an architecture for any
given reason

2. measuring techniques

- are applied to answer questions about specific

quality attributes

21

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Conceptual Flow of the ATAM®

Architectural

Decisions

Scenarios
Quality

Attributes

Architectural

Approaches

Business

Drivers

Software

Architecture

impacts

distilled
into

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Analysis

Risk Themes

22

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

Typical Output from Evaluations

Set of ranked issues, risks, risk themes, or problem areas that

• have supporting data

• are contained in a formal report

• are used as feedback to the project

Set of scenarios, questions, or checklists for future use

Identification of potentially reusable components

Enhanced system documentation

Estimation of the evaluation’s costs and benefits of the evaluation

Improvements to the evaluation technique or process

23

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

SEI Software Architecture Methods & Techniques

Prioritized
QA scenarios

ADD

Views &
Beyond
(VaB)

C lie n t
Te lle r 1

A cco u n t
S e rve r-M a in

A c cou n t
S e rve r-B a cku p

A cco u nt
A d m in is tra tiveD at ab a se

C o n n e c to r T y p es :

P u bl is h -S u sc r ib e

C l ie n t-S erv e r
R e qu es t /R e p ly

D a tab a s e A c c es s

A tta c hm e ntKEY C o m p o n e n t Ty p e s:

C lie nt

S e rv er

D at ab as e

D at ab as e
A p pl ic atio n

ASTER
Gateway

V0
Gateway

Maintenance
Tool

DSSYBASE

KEY
Repository Component

RPC

SQL

Exposed RPC
Interface

Exposed SQL
Interface

Patterns and tactics

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

“Sketches” of

candidate views,
determined by patterns

Requirements

QAW

ATAM

Stakeholders

Chosen, combined
views plus

documentation
beyond views

24

Software Architecture Thoughts
Ivers, 4/17/08

© 2008 Carnegie Mellon University

For More Information

James Ivers

Email: jivers@sei.cmu.edu

World Wide Web:

http://www.sei.cmu.edu/architecture

• Technical reports

• Case studies

• Tools & templates

Documenting Software

Architectures: Views

and Beyond

Software Architecture in

Practice, 2nd Edition

Evaluating Software

Architectures: Methods
and Case Studies

