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1 Background to the AIS

Deterministic random number generators are incorporated within many products. In some
instances they are used to generate challenges as part of an authentication process or to
generate signature keys or encryption keys.

In certain cases, such as in the context of evaluation of a digital signature component,
evaluation of authentication processes or the evaluation of components for key generation,
analysis and assessment of the random number generator is necessary.

The evaluation manuals provide no information on this.

A thorough and uniform evaluation methodology is required for use by all bodies performing
evaluations, certification or confirmation.

The document quoted in full below, "Functionality Classes and Evaluation Methodology for
Deterministic Random Number Generators, version 2.0, 2 December 1999", presents an
approach to describing and evaluating such a methodology.

The document incorporates the comments received from testing agencies and different
sections of the BSI and has been restructured and expanded in a number of stages compared
with the draft version (version 1.5) of 16 February 1999, and now constitutes the present
version 2.0.

The AIS is now mandatory.

The document may be revised and extended further at a later date when more information is
known or in the light of  practical experience gained from using it.
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A. Rationale, Objectives and Overview of Contents

A.1 Rationale and objectives. Random numbers play an important role in many
cryptographic applications. Yet there are still no uniform criteria for evaluating random
number generators. This paper presents some evaluation criteria for deterministic
random number generators. The basic idea is that the suitability of deterministic
random number generators should be assessed with reference to the cryptographic
applications in which they are used.

A.2 Overview of contents. Chapter B describes the subject of examination. Chapter C
introduces four functionality classes (K1, K2, K3, K4) and explains the underlying
rationale. Chapter D then describes the tasks of the evaluator, while the practical
applicability of the functionality classes and the tasks of the evaluator are illustrated in
Chapter E with the aid of various examples.

A.3 Note. The functionality classes defined below describe a set of hierarchical
requirements which are expressed not at the abstract level of the generic headings used
within ITSEC, but at the level of technical properties.

If an applicant who is aiming at a German IT security certificate uses a deterministic
random number generator which cannot be assigned to any of the functionality classes
K1 to K4, the application has to be agreed with the BSI.

B. Definitions and Notation

B.1 Mathematical description. A deterministic random number generator
deterministically generates random numbers which depend solely on the seed (initial
internal state). The 5-tuple (S, R, ϕ, ψ , pA) describes the logical structure of the
generator and the seed selection process. These parameters have the following
meaning:

S the (finite) set of possible internal states of the random number generator

R the set of possible output values (random numbers)

ϕ: S →  S the state function

ψ : S →  R the output function

pA a probability measure which describes the random distribution of the
seed.

At step n ≥ 1 the internal state is first updated using sn :=  ϕ(sn-1)∈  S and then a random
number rn := ψ (sn) ∈  R is calculated and output.

B.2 Note. Although, strictly speaking, the seed selection mechanism does not belong to
the description of a deterministic random number generator, its probability distribution



Bundesamt für Sicherheit in der Informationstechnik AIS 20, Version 1
2 December, 1999

3

may become extremely important when it comes to assessing the sequences of random
number to be expected.

B.3 Notation and usage. The abbreviation DRNG will be used hereafter to refer to
"deterministic random number generator". Where DRNG is used, it refers not to the
technical realisation of the random number generator but to the defining 5-tuple (S, R,
ϕ, ψ , pA).

C. Functionality Classes

C.0 Rationale for introducing functionality classes. It is not possible for a
deterministic random number generator to increase the total entropy of a random
number sequence beyond the entropy of the seed by generating new random numbers.
In this respect it contrasts with physical noise sources. Sequences of deterministically
generated random numbers cannot therefore be truly "random". In the best case they
may behave like truly random sequences with respect to specific criteria.

A number of attempts have been made in the literature to characterise "good" random
number sequences. In the context of cryptographic applications, [FI140] (4.11.1) and
[IEP] (G.4.5) deserve an especial mention. Whereas the first of these sources
formulates statistical tests, the second uses the practical unpredictability of the random
number sequences generated by a deterministic random number generator to
characterise its suitability. It should be noted that in the last two decades statistical
approaches to the evaluation of pseudorandom numbers have been closely related to
stochastic simulations. However, this work has generally entailed different
requirements being placed on the random numbers than those placed by cryptographic
applications (see also chapter C, K2.e)).

On the other hand, different cryptographic applications also have different
requirements regarding the random numbers which are necessary, and in any case
deterministically generated random numbers can only behave like "truly" random
numbers with respect to certain criteria. This suggests that the suitability of
deterministic random number generators should be assessed according to the intended
applications. Four downward-compatible functionality classes (K1, K2, K3, K4) are
defined and discussed in detail below. The practical application of the criteria is
demonstrated in Chapter E with the aid of six examples.

C.1 To be provided by the applicant:

(i) Statement of the intended functionality class (K1, K2, K3, K4) and the intended
strength of mechanism.

(ii.a) Complete and comprehensible informal description of the deterministic random
number generator.

(ii.b) Defining 5-tuple (S, R, ϕ, ψ , pA)
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(iii) An upper bound M for the maximum number of random numbers which can be
generated with the DRNG over its entire life-cycle or until it is re-initialised
with a new initial state s0∈S selected according to pA.

(iv) Clear description of how the seed is generated together with rationale as to how
this will induce the distribution pA.

+ Additional information which is specified under item f) for the relevant
functionality class.

C.2 Boundaries of the subject of examination DRNG

Subject of examination is the defining 5-tuple (S, R, ϕ, ψ , pA). The assessment of the
seed generation process, i.e. of the practical realisation of distribution pA (statement of
the applicant) is not part of the actual DRNG evaluation and is not covered in the
evaluation criteria described below. Nevertheless, the applicant must explain clearly
how the seed is generated (C.1(iv)) and explain why this produces distribution pA (see
also example E.7).

C.3 General note on the specification of functionality classes

(i) The strength of mechanism stated under item d) refers exclusively to logical attacks
on the defining 5-tuple (S, R, ϕ, ψ , pA). The strength of mechanism of the evaluation
of the whole product naturally depends considerably on the technical implementation
of the DRNG and its integration into the (complete) TOE (target of evaluation), as the
evaluation of the whole product must also consider direct attacks on the cryptographic
algorithms and protocols, the software or the operating system, as well as hardware-
oriented attacks.

(ii) Item d) describes the class-specific properties. The details required for an
evaluation in addition to C.1 (i)— (iv) are collected together in item f). The other items
provide further information and give reasons for the selection and objectives of these
requirements. Items i) and j) (see Chapter D) describe and explain the tasks of the
evaluator.

(iii) The table below provides a summary of the relationship between the functionality
classes, evaluation levels and the strength of the mechanism.
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Class Example (may be dependent on the choice of
suitable parameters)

Minimum E level /

Strength of mechanism

K1 E.1: counter

E.2: linear congruential generator

E.3: linear shift register

E.4: recursive call of a block cipher

E.5: counter with hash function

E.6: RSA generator

E2 / low, medium

E3 / high

K2 E.2-E.6 E2 / low, medium

E3 / high

K3 E.4-E.6 E3 / medium, high

K4 E.6 E3 / medium, high

Class K1

a) Qualitative intuitive description of K1-specific requirements:

There should be a high probability that random vectors (r1,… ,rc),(rc+1,… ,r2c),… ,(rM-

c+1,… ,rM) formed from random numbers r1,r2,…  are mutually different. The statistical
properties of these vectors are unimportant. (The choice of parameters c and ε (and
ultimately also of M) depends on the intended application.)

b) Possible applications:

--- Challenge-Response protocols (e.g. for use in a smart card-terminal authentication
process).

c) Objective(s):

Protection against replay attacks

d) Requirements for K1 DRNGs:

(i) The probability that vectors (r1,… ,rc),(rc+1,… ,r2c),… ,(rM-c+1,… ,rM) are mutually
different should be at least 1-ε.

If ε = 0, requirements for the strength of mechanism claim high are satiesfied.
Otherwise, the following apply:

M2/c2ε >  252  and ε < 2-16: the strength of mechanism claim high

M2/c2ε >  232 and ε < 2-12: the strength of mechanism claim medium
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M2/c2ε >  220 : the strength of mechanism claim low

e) Rationale:

The set R of the random numbers capable of being generated is not identical for all
DRNGs. Thus, examples E.1 to E.6 in Chapter D produce log2(N), f, 1, (normally)
64, m or 1 bit random numbers. There can therefore be no universal criteria for the
random number sequences r1,r2,…  themselves, but, rather, random number vectors
(r1,… ,rc),(rc+1,… ,r2c),…  must be investigated. The numeric values of c, M and ε are
stated by the applicant. They are derived from the target application(s) and the bit
width of the random numbers generated by the DRNG.

If one disregards the difficulties which would be encountered with a specific technical
implementation, the logical effort involved in a replay attack against the defining 5-
tuple (S, R, ϕ, ψ , pA) depends strictly monotonically decreasing on ε, and, if c is fixed,
strictly monotonically increasing on M. Specifically, for a successful replay attack in
the scenario which is most favourable to him (i.e. with a sharp bound 1-ε), an
adversary must on average observe 1/ε random vector sequences generated by different
DRNGs and compare the individual members of each of these sequences internally
with each other.

f) To be stated by the applicant in addition to C.1(i)--(iv):

(v) c ∈ |N and ε∈ [0,1). (Confirmation for several parameter pairs (c, ε) is possible.)

(vi) Mathematical proof (if necessary, with plausible assumptions regarding a
mathematical model - see also examples E.1-E.6), that requirement d)(i) is satisfied.
(The mathematical proof is optional if M |A| < 232 with A :=  {s∈S | pA(s) > 0} or
10M/ε < 232. See also K1.i) (ii.b) and (ii.c) in Chapter D.).

g) Explanations: ---

h) K1 DRNGs (examples):

E.1, E.2, E.3, E.4, E.5, E.6.

Class K2

a) Qualitative intuitive description of K2-specific requirements:

The random numbers generated possess similar statistical properties to random
numbers which have been generated by an ideal random number generator.



Bundesamt für Sicherheit in der Informationstechnik AIS 20, Version 1
2 December, 1999

7

b) Possible applications:

--- Stream ciphers which are controlled through a shift register bundle whose initial
values are derived from secret long-term keys and a session key which is transmitted in
plaintext at the beginning of the communication.

c) Objective(s):

Correlation attacks on cryptographic algorithms which are based on statistical
weaknesses of the random numbers used (possibly as random keys) must be ruled out.

d) Requirements for K2 DRNGs:

--- The DRNG must belong to class K1 (downward compatibility).

(ii) Interpreted as a binary string, random number sequences r1,r2,…  and their
projections onto individual bits must pass statistical tests T1-T5 specified in Chapter F
(see K2.i)).

The strength of mechanism corresponds to that of the K1-specific portion. Evaluation
of the test results is independent of the strength of mechanism .

e) Rationale:

If one were to apply the tests specified in Chapter F to an ideal noise source, the
probability of rejecting the null hypothesis for each individual test would be around
10-6. In particular, the probability of an erroneous failure to recognise that a DRNG
satisfied the K2 requirements (see K2.i), decision rule) would be less than 2.5⋅10-6.
Therefore halfway "reasonable" DRNGs should in practice always pass the statistical
tests (see also comment D.2). Although they are not very powerful, the statistical tests
should be strong enough to exclude known attacks on the cryptographic algorithms
which are based on statistical weaknesses of random numbers.

"Basic components" of stochastic simulations are normally so-called standard random
numbers which with respect to many of their statistical aspects behave like realisations
of independent random variables uniformly distributed on the interval [0,1). In nearly
all practical problem situations, only the most significant bits of the standard random
numbers generated have any material effect on the simulation results. Generally this
does not apply to cryptographic applications. Therefore one should strive for similar
statistical behaviour of the individual bits. The tests described under K2.i (iii.b) should
detect any weaknesses in individual bits (see also example E.2).

f) To be stated by the applicant in addition to C.1(i)--(iv) and K1.f)(v)-(vi): ---

g) Explanations: ---

h) K2 DRNGs (examples):

The K2-specific requirements are demonstrated through statistical tests, hence case-
specific theoretical considerations are not really necessary. Nevertheless, this is
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covered in Chapter E. One may assume that the examples E.2-E.6 will pass the
required statistical tests, assuming a suitable choice of parameters.

Class K3

a) Qualitative intuitive description of K3-specific requirements:

It is practically impossible for an adversary to work out or guess the numbers which
precede or follow a random number subsequence ri,ri+1,… ,ri+j or to work out or guess
an internal state. The adversary's assumed attack potential depends on the strength of
mechanism.

b) Possible applications:

--- generation of pairs of signature keys

--- generation of DSS signatures (private key x or random number k; see     [FI186])

--- generation of session keys for symmetric cryptographic mechanisms

--- pseudorandom padding bits (see also [RSA], section 8.1)

--- zero-knowledge proofs

c) Objective(s):

Protection against reconstruction of old random numbers and prediction of future
random numbers from a known subsequence.

d) Requirements for K3 DRNGs:

---  The DRNG must belong to class K2 (downward compatibility).

(iii) For the strength of mechanism claim high, H(pA) ≥ 80; for strength of mechanism
strength medium, H(pA) ≥ 48. (The entropy of pA is given by H(pA) = -Σs∈S pA(s)
log2(pA(s).)

(iv) It must be practically impossible for an adversary to work out predecessor ri-1 or
successor ri+j+1 of a subsequence ri,ri+1,… ,ri+j which is known to him (i+j ≤ M). The
adversary's assumed attack potential depends here on the strength of mechanism. Even
using the most advanced know-how currently available, the probability of guessing
(realised by a reasonable partial exhaustion) may at most be negligibly greater than if
the subsequence were not known. It is assumed that the adversary knows the defining
5-tuple. However, he does not know any of the internal states s0,s1,… , sM.

Under the strength of mechanism claim "high", the adversary is assumed to have the
most advanced know-how currently publicly available, the currently most powerful
technology without limitations and a period of several years over which to perpetrate
his attack. Under the strength of mechanism claim "medium" the adversary is assumed
to have medium attack potential within the meaning of ITSEM, Appendix 6.C (see also
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g) and example E.4). It is not possible to evaluate the K3-specific properties with the
strength of mechanism claim "low".

e) Rationale:

In the definition of the attack potential to be considered, the requirements specified in
d)(iv) for the strength of mechanism claim high go considerably beyond the
corresponding definition in ITSEM, Appendix 6.C. The one-way properties required in
d(iv) move K3 DRNGs close to cryptographic mechanisms (e.g. hash functions). A
special evaluation procedure is implicitly provided for this in ITSEC 3.23 and ITSEM
6.C.34.

It is especially important in connection with digital signatures and the generation of
symmetric session keys for sensitive applications that the attack potential considered
exceeds the ITSEM requirements. The generation of session keys for symmetric
encryption mechanisms which themselves only possess the strength of mechanism
claim medium constitutes an exception here.

The length restriction of random number subsequence ri,… ,ri+j , which is presumed to
be known, follows naturally from C.1 (iii). Requirement d)(iv) simultaneously
guarantees the security of each predecessor and each successor rv (with v ≤ M) of this
subsequence, as nothing is presupposed apart from i+j≤M. (If the subsequence which
is presumed to be known is lengthened to rv+1,…  ri+j or ri… ,rv-1, then rv directly
precedes or follows it). Moreover d)(iv) also safeguards the internal states, since, when
st is known, random numbers rt,rt+1,…  can be calculated easily. In view of d)(iii) and
the K2 property, it should be practically impossible without knowledge of a random
number subsequence to guess the internal state, individual random numbers or short
subsequences since, apart from pathological exceptions, relatively short random
number subsequences possess virtually all of the entropy of the seed already. ("Short"
depends on the bit width of the random numbers.)

Formalisation of the K3 requirements, especially as regards guessing, demands
maintaining a balancing act between mathematical exactness and the practical
feasibility of verifying the criteria. Many publications on "hard core bits" make use of
characterisations from complexity theory (e.g. see the overview article [La]) to define
terms such as bit unpredictability (see also [ACGS], 196). The crucial disadvantage for
the applications we envisage is that the definitions and conclusions refer not to a single
DRNG but to a whole family of DRNGs, i.e. the results are asymptotic. A quantitative
determination of the computational effort required or of the probability of guessing in
specific particular cases, assuming the maximum attack potential is available, should
be extremely difficult if not impossible. Instead, a pragmatic approach is adopted (cf
i)), whereby verification of property d) (iv) is shifted to a related problem which is
generally viewed as not practically feasible with the adversary's assumed attack
potential (even though this normally cannot be formally proven).

f) To be stated by the applicant in addition to C.1(i)--(iv) and K1.f)(v)-(vi):
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(vii) Mathematical proof (if necessary, with plausible assumptions regarding a
mathematical model) that requirement d)(iv) is satisfied.

g) Explanations:

for d)(iv), f)(vii): Demonstration of property d)(iv) can consist of showing, if necessary
with plausible assumptions, that working out ri-1 and ri+j+1 or specifying a guessing
strategy which utilises knowledge of ri,… ,ri+j are at least as difficult as a problem
which is generally viewed as not practically feasible with the attack potential specified
in d)(iv) (see examples E.4 and E.6).

h) K3-DRNGs (examples):

The strength of mechanism claim high: E.4 (for Enc = Triple-DES, IDEA), E.5, E.6;

The strength of mechanism claim medium: E.4 (for Enc = DES).

Class K4

a) Qualitative intuitive description of K4-specific requirements:

It is practically impossible for an adversary to work out or guess predecessor random
numbers or predecessor internal states from knowledge of the internal state si. The
adversary's assumed attack potential depends on the strength of  mechanism.

b) Possible applications:

--- generation of pairs of signature keys

--- generation of DSS signatures (private key x or random number k; see     [FI186])

--- generation of session keys for symmetric cryptographic mechanisms

--- pseudorandom padding bits (see also [RSA], section 8.1)

c) Objective(s):

Protection against reconstruction of old random numbers from a known internal state.
(Scenario: adversary obtains possession of the technical implementation of the DRNG
and is able to read out the internal state.)

d) Requirements for K4 DRNGs:

---  The DRNG must belong to class K3 (downward compatibility).

(v) It must be practically impossible for an adversary to work out the predecessor
random number ri-1 from knowledge of the internal state si . The adversary's assumed
attack potential depends here on the strength of mechanism. Even using the most
advanced know-how currently available, the probability of guessing (realised by a
reasonable partial exhaustion) may at most be negligibly greater than if si were not
known. It is assumed that the adversary knows the defining 5-tuple.
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Under the strength of mechanism claim "high", the adversary is assumed to have the
most advanced know-how currently publicly available, the currently most powerful
technology without limitations and a period of several years over which to perpetrate
his attack. Under the strength of mechanism claim "medium" the attacker is assumed to
have medium attack potential within the meaning of ITSEM, Appendix 6.C. It is not
possible to evaluate the K4-specific property with the strength of mechanism claim
"low".

e) Rationale: analogous to K3.e). It should simply be noted that requirement d)(v) does
not protect only the direct predecessor of random number ri-1, but every rv and sv where
v<i (rationale analogous to K3.e), paragraph 3). Requirement d(v) is a tougher version
of the "backward property" contained in d(iv), as it is easy to calculate random
numbers ri,...,ri+j from the internal state si.

f) To be stated by the applicant in addition to C.1(i)--(iv), K1.f)(v)-(vi) and K3.f)(vii):

(vii) Mathematical proof (if necessary, with plausible assumptions regarding a
mathematical model) that requirement d)(v) is satisfied.

g) Explanations:

See K3.g)

h) K4 DRNGs (examples):

E.6 (the strength of mechanism claim high)

C.4 Note. It is clear that with K3 or K4 DRNGs possessing the strength of mechanism
claim high one is "on the safe side". On the other hand, if the DRNG is used to
generate keys for an encryption algorithm which itself only possesses the strength of
mechanism claim medium, then the strength of mechanism claim medium is obviously
sufficient. Subject to the intended applications, it can be highly appropriate to use a K1
or K2 generator, as these normally require less computational effort and their
implementation requires less code and hence less RAM than is the case with K3 or K4
generators. These aspects can be particularly relevant when the applications involve
smart cards. It should also be borne in mind that, when implementing a K3 or K4
DRNG, to be consistent it is necessary to ensure (overall evaluation!) through
appropriate protective measures (hardware, software, operating system) that the
internal state of the DRNG (e.g. a secret cryptographic key) is reliably protected
against unauthorised retrieval. This is not necessary for K1 and K2 DRNGs.

D. Evaluation Methodology

Chapter D describes how the evaluator should test the specific properties of a given
functionality class. The sub-sections are numbered beginning with i).
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D.0 Connection with the evaluation of the whole product. The manufacturer
specifies the security functionality requirements in the security target. Where it is
already appropriate in particular cases to specify the generation and usage of random
numbers at this level of abstraction, the functionality class of the random number
generator is stated with reference to the security function of the (complete) TOE.
(Often the deterministic random number generator forms only a part of the product to
be evaluated.) Any assumptions regarding the operational environment and the secure
use of the TOE must be specified (e.g. the requirement for a suitable seed generation
process).

The implementation of the deterministic random number generator must be specified in
the low-level design. In certain cases this can affect the documentation concerning
delivery and configuration, start-up and operation and the operational documentation.

In particular, as part of the analysis of suitability, a rationale must be provided as to
why the method of seed generation is suitable (see also C1 (iv) and C.2). The seed
generation process should likewise be covered during penetration testing of the TOE.

D.1 Scope and sequence of evaluation work

Subject of examination is the defining 5-tuple (S, R, ϕ, ψ , pA). The generation of the
seed, i.e. the practical realisation of initial state pA, is not part of the actual DRNG
evaluation and is not covered in the evaluation criteria (see C.2). However, the actual
evaluation is only carried out where the evaluator is satisfied from the applicant's line
of reasoning that this seed generation process does induce distribution pA. The
practical realisation then plays no further role in the evaluation itself.

• The evaluator reviews the arguments provided by the applicant in the analysis of
suitability with regard to realisation of the initial distribution pA.

• The evaluator has to compare the defining 5-tuple (S, R, ϕ, ψ , pA) with the informal
description of the deterministic random number generator (C.1(ii.a)) and to check it
for consistency.

• The evaluator performs class-specific tasks which are specified under item i) of the
relevant functionality class and explained under j).

Class K1 (continued)

i) Tasks of the evaluator

(ii.a) Verification of any mathematical proof f)(v) provided by the applicant that the
DRNG submitted belongs to class K1.

(ii.b) If no mathematical proof of the K1 property is provided and at the same time M
|A| < 232 with A := {s∈S | pA(s) > 0}, then the K1 property is demonstrated by trying
out all the permitted initial values s0∈A, so that vectors (r1,… ,rc),… ,(rM-c+1,… ,rM) are
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formed in each case and the members of the series are checked for pairwise difference.
The results are weighted according to pA.

(ii.c) If it is not possible to verify the K1 property by means of (ii.a) or (ii.b), but
10M/ε < 232 and the strength of  mechanism is at least medium, then verification is
performed using a stochastic simulation. For this purpose the evaluator generates initial
states  s0;1,… ,s0;t∈  S with    t  =  10/ε according to pA in a (pseudo)random way. For
each of these initial states, he calculates the vectors (r1,… ,rc),… ,(rM-c+1,… ,rM) and
checks the members of the sequence for pairwise difference.

If duplicate random vectors occur on no more than one out of all t individual
simulations, then the DRNG's K1 property is confirmed (with the parameters c, M, ε).

j) Notes re i):

Re i)(ii.b) and (ii.c): the evaluator must generate a maximum of 232 random numbers.

Re i)(ii.c): the evaluator interprets the results of the t individual simulations as
realisations t of independent, identically B(1, p)-distributed random variables with
unknown p, whereby the result "1" corresponds to multiple occurrences of vectors.
When confirming the K1 property, the only item of interest is whether p ≤ ε holds true.
For this purpose, the evaluator carries out a statistical test with the null hypothesis H0:
p > ε and the alternative hypothesis H1: p ≤ ε, and the null hypothesis is rejected if
duplicate random vectors occur on less than two individual simulations. The
probability of this event depends on the unknown probability p, with q(p) := (1+λp)e-λp

with λp = pt (Poisson approximation).

If p > ε, then the probability of erroneous confirmation of the K1 property is less than
q(ε) = 0.0005. For p < ε/128, for example, the probability of erroneously rejecting a
DRNG's K1 property is less than q(ε/128) = 0.003. (This means in reality that the
applicant has to state a significantly higher ε than the (supposed) actual value in order
to get the DRNG's K1 property successfully confirmed under test requirement (ii.c)
and certified.)

Class K2 (continued)

i) Tasks of the evaluator

--- Verification of K1 property (see K1.i))

Let f refer to the width of the random numbers capable of being generated by the
DRNG in binary representation (normally f = log2  R) and πw to the projection to
the w'th component.

(iii.a): The evaluator chooses an initial state s0 ∈  S according to pA, generates random
numbers r1,r2,… , and interprets these as bit strings of fixed length. He applies tests T1-
T4 described in Chapter F to the first 20,000 bits of this sequence, using the specified
critical values. He also calculates the test statistics Z1,… ,Z5000 (see test T5 in Chapter
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F), determines maxτ≤5000{|Zτ-2500|} and chooses a τ0 (at random if there are several
candidates) for which this maximum is assumed. He then applies the autocorrelation
test (test T5) with shift τ0 and the critical values specified in Chapter F to the
subsequence b´1 := b10001,… ,b´10000 := b20000.

(iii.b)(w) (1 ≤ w ≤ f.): The evaluator chooses an initial state      s0 ∈  S according to pA

and generates random numbers r1,r2,… ,r20000. He then applies the statistical tests T1-T4
described in Chapter F to the sequence of projections πw(r1),… ,πw(r20.000), using the
specified critical values. He also calculates the test statistics Z1,… ,Z5000 (see test T5 in
Chapter F), determines maxτ≤5000{|Zτ-2500|} and chooses a τ0 (at random if there are
several candidates) for which this maximum is assumed. He then applies the
autocorrelation test (test T5) with shift τ0 and the critical values specified in Chapter F
to the subsequence b´1 := b10001,τ,b´10000 := b20000.

Decision rule

The evaluator performs test procedures (iii.a), (iii.b)(1), (iii.b)(2),… , (iii.b)(f), (iii.a),…
in sequence until a total of 257 bit sequences have been generated and tested. If the
DRNG (i.e. the 5-tuple (S, R, ϕ, ψ , pA)) passes all the individual tests, then the DRNG
is confirmed as satisfying d)(ii). If more than one individual test results in a rejection,
the DRNG is deemed to have failed to satisfy requirement d)(ii).

If exactly one individual test resulted in a rejection, then the whole test procedure must
be repeated, and only if the DRNG passes all the single tests this time is it confirmed
as satisfying requirement d)(ii). A second repetition is not permitted.

The 5-tuple (S, R, ϕ, ψ , pA) is confirmed as satisfying the requirements for class K2
membership if it defines a K1 DRNG and passes the K2-specific tests in accordance
with the decision rule from i).

j) Notes re i):

The random numbers to be tested need not be generated using the target of evaluation
itself. The evaluator can use a simulation program written by him for this purpose.
(This is likely to considerably speed up the process of running through test procedures
(iii.a) and (iii.b)(w).)  The initial distribution pA must be simulated in an appropriate
manner.

Class K3 (continued)

i) Tasks of the evaluator

--- Verification of K2 properties (see K1.i), K2.i))

(iv) Verification of d)(iii)
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Verification of the mathematical proof provided by the applicant that d)(iv) is satisfied.

When confirming K3 membership with the strength of mechanism claim high
(medium), not only properties d)(iii) and d)(iv) must be evaluated with mechanism
strength high (medium), but also property d)(i) (see K1.d)).

j) Notes re i):

Re i)(v): see K3.g)

Class K4 (continued)

i) Tasks of the evaluator

--- Verification of K3 property (see K1.i), K2.i), K3.i))

(vi) Verification of the mathematical proof provided by the applicant that d)(v) is
satisfied.

When confirming K4 membership with the strength of mechanism claim high
(medium), not only property d)(v) must be evaluated with the strength of mechanism
claim high (medium), but also properties d)(i) (see K1.d)), d(iii) and d)(iv) (see K3.d)).

j) Notes re i):

Re i)(vi): see K3.g)

D.2 Note. Properties d(i) (apart from the evaluation possibility K1.h)(ii.c)), d(iii), d(iv)
and d(v) are verified using theoretical proofs.  Naturally, proofs are reproducible, i.e.
d)(i), d(iii), d(iv) and d(v) are properties of the defining 5-tuple (S, R, ϕ, ψ , pA). On the
other hand, verification using a stochastic simulation (cf K1.i)(ii.c)) or statistical tests
(property d)(ii), cf K2.i)(iii.a) and (iii.b)) is not reliably reproducible as the seed is
randomly selected according to pA. Therefore, at least property d)(ii) is not a property
of the 5-tuple (S, R, ϕ, ψ , pA) itself. This awkward state is mitigated by the facts that,
firstly, it is highly improbable (cf K1.i)) that a DRNG will erroneously be confirmed as
satisfying the requirements for class K1 on the basis of K1.h)(ii.c) and, secondly, that
the probability of failing to recognise the d)(ii) property for "reasonable" DRNGs is
even lower (cf K2.e)). In this way even that portion of the results of the DRNG
evaluation which is obtained empirically is "quasi-reproducible", which is essential for
the reliability and trustworthiness of the evaluation procedure.

D.3 Evaluation levels. Classes K1 and K2 can be evaluated up to the strength of
mechanism claim "medium" from E2 if additional information is provided by the
applicant. Otherwise, at least assurance level E3 is necessary, and in this case also
additional information is required from the applicant.
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E. Examples

In examples E.1 to E.6 several DRNG types are investigated with regard to the
requirements specified for functionality classes K1 to K4. Although K2-specific
property d)(ii) is checked using statistical tests, it is briefly covered below as well.

E.7 provides an example of the required rationale C.1(iv), as to how the seed
generation induces distribution pA.

E.0 Notation. Let ZN :=  {0,1… ,N-1} and µT the uniform distribution on the finite set
T.

E.1 Example (counter). The DRNG is specified via the 5-tuple (ZN, ZN, ϕ, ψ , µ{0})
with state function ϕ(j) :=  j+1 (mod N) and output function ψ (j) :=  j.

If N > M, then even for ε = 0 the K1 property is satisfied for every c. Obviously, even
for pA = µZN the  counter fails already on the K2-specific tests.

E.2 Example (linear congruential generator)

Let N :=  2d and a < N with a≡1 (mod 4). Starting from an initial state s0∈  ZN, a series
s1,s2,…  is calculated recursively via sj = ϕ(sj-1) :=  (asj-1+1)(mod N). In step j, the f
most significant bits (f ≤ d) are output as random number rj, i.e. rj = ψ (sj) :=  sj/2d-f.
This results in the defining 5-tuple (ZN, {0,1}f, ϕ, ψ , µZN).

For f = d, equality of two random number vectors (ric+1,… ,r(i+1)c) and (rjc+1,… ,r(j+1)c)
would mean in particular sic+1 = ric+1 = rjc+1 = sjc+1, which cannot occur for M ≤ 2d

(period length of the DRNG).

For sufficiently large d (e.g. d ≥ 48) the statistical behaviour of the standard random
numbers s1/2d, s2/2d,…  is similar to realisations of independent random variables which
are uniformly distributed on the interval [0,1). If for small f (and M small compared
with period length 2d), random number sequences r1,r2,… rM are interpreted as
realisations of independent random variables uniformly distributed on {0,1}f , then to a
good approximation P((r1,… ,rc),… ,(rM-c+1,… ,rM) mutually different) ≈ e-M/c*(M/c-1)/2cf+1

holds true for M/c< 2cf/2 (birthday phenomenon!). If M and ε are "reasonable", the
linear congruential generator thus satisfies property d)(i) with small f also. (For M/c =
216 and cf = 54, for example, the right-hand term ≈ 1-2-23.) If f≈d, the linear
congruence generator will not pass the K2-specific test, as the k-least significant bit is
2k periodic.

E.3 Example (linear shift register)

Let p: {0,1}d→  {0,1}, p(x) :=  ∑ j=0
d-1 aj xj  denote the primitive generator polynomial of

a linear shift register of length d. Let the initial state, i.e. the initial value of the shift
register, be randomly (uniformly distributed) chosen from the set of non-zero d-tuples.
The defining 5-tuple is given by ({0,1}d, {0,1}, ϕ, ψ , µS\{0}), with ϕ(bn-1,… ,bn+d-2) :=
(bn,… ,bn+d-2,   bn+d-1 :=  ∑ j=0

d-1 aj bn+d-2-j) and ψ (bn,… ,bn+d-1) :=  bn.
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As p is assumed to be primitive, besides the zero state only one further cycle of length
2d-1 exists, i.e. exactly the set of all permitted initial states. If c ≥ d and M ≤ 2d-1, then
(M/c) many c-tuples (r1,… ,rc),(rc+1,… ,r2c),… ,          (rM-c+1,… ,rM) produce different
pairs for every s0∈S\{0}, since equality of two c-tuples implies in particular the
equality of their projections onto the first d components, i.e. the equality of the internal
states. For c ≥ d, the linear shift register also belongs to class K1, and with the optimal
value ε = 0. If d is sufficiently large, it should also pass the K2-specific statistical tests.

If  the feedback polynomial p is known, one needs around d random numbers to
reconstruct the internal state of the shift register. (If p is unknown it can be determined
from a known random number subsequence of length around 2d using the Berlekamp-
Massey algorithm.) Linear shift registers therefore do not belong to class K3.

E.4 Example (recursive call of a block cipher). Let Enc denote a symmetric block
cipher algorithm (e.g. DES, triple-DES, IDEA) with identical plaintext and cipher text
space, and let SB and SK denote the plaintext space and the key space, respectively. Let
the initial state s0 :=  (r0,k) ∈  SB×SK be chosen randomly (uniformly distributed). Key k
remains constant throughout the entire random number generation process and is kept
secret.

The DRNG is described by the 5-tuple (SB×SK, SB, ϕ, ψ , µSB×SK) with                ϕ:
SB×SK→  SB× SK, sn = (rn,k) = ϕ(rn-1,k) :=  (Enc(rn-1;k),k) and ψ : SB×SK →  SB, ψ (rn,k)
:= rn.

Random numbers r1,… ,rM are mutually different iff the initial value r0 ∈  SB is in a
cycle of length ≤ M with respect to the permutation r→  Enc(r; k). For Enc = DES, Enc
= triple-DES or Enc = IDEA one may assume on the basis of the latest research that
the random variable k→  Enc(•;k) (random key selection!) has similar properties as a
random permutation. With this model assumption, it is not difficult to see that the cycle
length of r0 (random selection!) is uniformly distributed on the set {1,… ,|SB|}. Hence
P((r1,… ,rc),… ,(rM-c+1,… ,rM) pairwise disjoint) ≥ P(r1,… ,rM pairwise disjoint) ≈ 1-(M-
1)/|SB|, so that for ε ≥ (M-1)/|SB| the DRNG should be considered to belong to class
K1. As no statistical oddities are known of block cipher algorithms generally viewed as
strong, one may assume that this DRNG also passes the K2-specific tests.

If one could determine from knowledge of a subsequence ri,… ,ri+j its predecessor ri-1 or
even the internal state, i.e. especially the secret key k, this would constitute a
successful (special) known plaintext attack on the block cipher algorithm Enc, namely
on plaintext or key, respectively. (Note: such an attack would be at least as difficult to
carry out as a chosen plaintext attack against Enc.) By analogy, the task of determining
the successor ri+j+1 constitutes a special known plaintext attack against the encryption
function Enc-1. For Enc = DES, triple-DES or IDEA, the DRNG fulfils the K3-specific
properties d)(iii) and d)(iv), as no guessing strategies are known for guessing unknown
plaintext or key bits with a probability greater than 0.5. Triple-DES and IDEA possess
the strength of mechanism high, whereas simple DES has only the strength of
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mechanism medium (exhaustive key search!). This DRNG type does not belong to
class K4 (encryption!).

E.5 Example (counter with hash function)

Let S = ZN with N ≥ 2200, ϕ: ZN →  ZN, ϕ(j) :=  j+1(mod N), and let the initial value  s0

∈  S be random, i.e. chosen uniformly distributed on ZN and kept secret.

In addition, let H: {0,1}|N →  {0,1}m be a hash function viewed as suitable (e.g.
RIPEMD-160). Then (ZN,{0,1}m, ϕ, H, µZN) defines a DRNG.

If one interprets the hash function as a random variable over ZN with values in {0,1}m,
and if one further assumes that sequences H(i),H(i+1),…  possess statistical properties
which are similar to realisations of independent random variables which are uniformly
distributed on {0,1}m, then the K1 property is verified as in E.2 for small f. (P
(r1,r2,… ,rM are mutually different) ≈ e-M*(M-1)/2|H(S)|.) The DRNG satisfies the K3-
specific properties (one-way property of the hash function) with the strength of
mechanism claim high, although it clearly is not a K4 DRNG.

E.6 Example (RSA generator): (see also [La], 131)

Let p and q be prime numbers such that p≠q, N :=  pq and e∈{1,… ,φ(N)} with ggT(e,
φ(N)) = 1, whereby φ denotes the Euler function. The prime factors p and q are suitably
chosen (e.g. in accordance with the recommendations of the catalogue of measures for
the Digital Signature Act (SigG)), kept secret and deleted after calculation of
N(known) and selection of e (not known). Let the initial state s0 = (t0,e) ∈  ZN×B :=
ZN×{0<y<φ(N) | ggT(y,φ(N))=1} be chosen at random (uniformly distributed).

The RSA generator is described by the 5-tuple (ZN×B, {0,1}, ϕ, ψ , µZN×B), whereby the
mappings ϕ and ψ  are given by ϕ: ZN×B→  ZN×B, ϕ(tn-1,e) :=  (tn-1

e (mod N),e) and ψ :
ZN×B→  {0,1}, ψ (tn,e) :=  tn (mod 2).

To assess RSA generators, we use asymptotic results which are available in the
literature, whereby we assume that the asymptotic behaviour takes effect at the order of
magnitude of the chosen modulus N. In particular it is assumed that it is difficult, i.e.
practically infeasible, to invert x→  xe(mod N) when e is known but d :=  e-1 (mod
φ(N)) is not. (If this were possible, one would then be able to generate valid signatures
solely from knowledge of the public key.) Using our terminology, it is practically
impossible to work out or guess si-1 from si.

If it were possible to guess the least significant bit in ti-1, i.e. ri-1, from a knowledge of
the internal state (ti,e) with a non-negligible probability in excess of 0.5 (e.g. see [La],
132 (theorem 7.1)), one would be able to determine ti-1 with a probabilistic polynomial-
time algorithm (polynomial in log2(N)) stated in [ACGS]. If one assumes that
polynomial-time algorithms are practically feasible (hypothesis!), then K4-specific
property d)(v) is demonstrated: since, under the above assumption regarding the
security of a RSA signature compliant with the German Digital Signature Act, it is
practically impossible to determine si-1 from si, guessing ri-1 from ri,… ,ri+j can
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ultimately no more likely to be successful than "blind" guessing, choosing both "0" and
"1" with probability 1/2. In particular, this means that the "backward property" of K3-
specific requirement d)(iv) is verified. But it is also the case that tv ≡tv+1

d(mod N) with
d≡e-1 (mod φ(N)). The above line of argument naturally does not apply only to the
initial state s0 :=  (t0,e), but also to s0' :=  (ti+j+1,d). As neither e nor d is known, the K3-
specific "forward property" is thus demonstrated by reason of symmetry.

On the basis of the above considerations (see also [La], 132 (theorem 7.1) and 126
(theorem 4.1)) one may assume that the c-tuples (r1,… ,rc),(rc+1,… ,r2c)…  exhibit similar
statistical properties as realisations of independent random vectors which are uniformly
distributed on {0,1}c. The K1 property follows as in example E.2 for small f. Likewise
one may assume ([La], 126 (theorem 4.1)) that the RSA generator also passes the K2-
specific tests. The probability of rejecting the null hypothesis should settle around the
order of magnitude of a Type 1 error.

E.7 Seed generation

Let pA = µS with S = {0,1}128. The seed is calculated from keyboard entries made by
the user prior to using the target of evaluation for the first time. He is allowed to enter
upper and lower case letters, the numerals 0-9, "." and ":", altogether 64 characters.
Every character entered is coded as a 6-bit word and succeeding 6-bit words are
concatenated. Any character which is the same as its two predecessors is ignored. The
bit string formed from the first 85 characters which are not ignored (510 bits) is hashed
using RIPEMD-160. The seed is produced from the first 128 bits of the hash value.
The user is informed in the user manual that the character string should be as "random"
as possible.

Assessment: the procedure for generation of the seed is suitable for realising pA = µS.
In fact an increase in entropy in each non-ignored character in the order of magnitude
of at least 1.5 bits should be sufficient.

F. Statistical Tests

In this chapter the statistical tests which are performed in order to verify K2-specific
property d)(ii) are listed. Tests T1 – T4 together with their designation and critical
values are taken from [FI140] (4.11.1).

b1,… ,b20000 refers to a bit sequence of length 20000. If the sequence b1,… ,b20000  had
been generated from an ideal noise source, then the probability of rejecting the null
hypothesis on each individual test would be around 10-6.

Test T1 (monobit test)

X =  ∑ j=1
20000   bj

The sequence b1,… ,b20000  passes the monobit test if 9654 < X < 10346.

Test T2 (poker test)
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For j = 1,… ,5000, let cj  = 8⋅b4j-3+4⋅b4j-2+2⋅b4j-1+b4j. Further, f[i] :=  |{j: cj=i}|.

Y =  (16/5000)(∑ i=0
15   f[i]2)-5000

The sequence b1,… ,b20000  passes the poker test (=χ2 goodness of fit test with 15
degrees of freedom) if 1.03 < X < 57.4.

Test T3 (run test)

A run refers to a maximum subsequence of zeros or ones occurring in succession.

The sequence b1,… ,b20000  passes the run test if the number of occurrences of run
lengths lies within the permitted intervals which are specified below. Runs of zeros
and ones are evaluated separately.

Run length Permitted interval

1 2267-2733

2 1079-1421

3 502-748

4 233-402

5 90-223

≥ 6 90-233

Test T4 (long run test)

A run of length ≥34 is deemed to be a long run.

The sequence b1,… ,b20000  passes the long run test if no long run occurs.

Test T5 (autocorrelation test)

For τ ∈  {1,… ,5000}, Zτ :=  ∑ j=1
5000  (bj ⊕ bj+τ)

The sequence b1,… ,b20000 passes the autocorrelation test (with shift τ), if 2326 < Zτ <
2674. (Note that the subsequence b10001,… ,b20000 does not enter into the test statistic.)
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