

UCA OpenSG Security: Update on Embedded Systems Security Task Force Activities

> Rohit Khera, <u>rxkw@pge.com</u> 03/09/2011

- •Update on Secure Device Profile Components
- •Deliverables and Progress
- •Some Questions Around Hardware
- •Intellectual Property Rights Considerations
- •Constraint Characterization
- •Organization & Contact Info

Secure Device Profile Components

Deliverables and Progress

Торіс	Primary Owner/s	Secondary Owner/s	Start Date / Status	Est. Completion
<u>Cryptographic</u> <u>Hardware</u>	Shrinath Eswarahally (Infineon)		Underway (first draft submitted)	
<u>Ciphers</u> (refer to NISTIR 7628 Crypto Section)	Rohit Khera (PG&E)	Daniel Thanos (GE)	Underway	
Random Number Generation	Sami Nassar (NXP)	Rohit Khera (PG&E)		
Device Identity	Sami Nassar (NXP) Marc Auclair (NXP) Mike Ahmadi (GraniteKey/NXP)	Sadu Bajekal (IBM)		
Device Authentication & Access Control	None			
Device Robustness & Resilience	Bora Akyol (PNNL) Daniel Thanos (GE)			
Key Management	David Sequino (Green Hills Software) Chris Dunn (Safenet) Gib Sorebo (SAIC)			

Deliverables and Progress

Торіс	Primary Owner/s	Secondary Owner/s	Start Date / Status	Est. Completion
Device Mgmt	Sadu Bajekal (IBM) Steve Dougherty (IBM)			
Secure Protocols	None			
Device Authentication and Access Control	None			

Overview On Acceleration

Acceleration for public key cryptography – Sample Applications

Modular Multiplication

- Multiple efficient acceleration approaches for modular multiplication in Z/nZ (i) multiply and reduce (ii) interleaving (Karatsuba Ofman, Booth-Barrett, Montgomery method)
- Multiple efficient acceleration approaches for modular multiplication in GF(2^m) basis dependent / independent

Elliptic Curve Primitives Key Gen, Key Exchange, Signing & Verification Layer 4 Scalar Multiplication Q = nP Layer 3 Elliptic Curve Operations Point doubling R = P+Q Layer 2 Of arithmetic Multiplication, Squaring, Addition, Inversion Layer 1

Acceleration techniques for ECC

Legend

Candidate functions for efficient / cost effective hardware implementation

Monolithic / Single Die

Example – Smart Cards (Cryptographic / Security boundary encompasses the entire system)

Advantages – Entire system contained within boundary

Dis-Advantages - Low word size (typically 16 bit) and clock rating

Co - Processor

<u>Advantages</u> – Augment security functions, secure key storage (how about oracle based attacks?), acceleration, side channel protections etc.

Dis-Advantages – Cleartext traverses bus to general purpose MCU?

Robust Cryptography possible on constrained systems

Table 7: Estimated time and power consumption for signature generation/verification and key exchange for the client and server side on a TelosB

Cryptosystem	Signature	
	Generation	Verification
RSA-1024	$68.97 \mathrm{~mWs}$	2.70 mWs
	$5.66 \ s$	0.22 s
ECC-160	6.26 mWs	12.41 mWs
	$0.52 \ s$	$1.02 \ s$
RSA-2048	523.10 mWs	12.20 mWs
	$42.89 \ s$	$1.00 \ {\rm s}$
ECC-224	$16.93 \mathrm{~mWs}$	33.55 mWs
	$1.39 \ s$	$2.76 \ s$
Cryptosystem	Key ex	change
Cryptosystem	Key ex Client	change Server
Cryptosystem RSA-1024	Key ex Client 3.51 mWs	change Server 68.97 mWs
Cryptosystem RSA-1024	Key ex Client 3.51 mWs 0.29 s	change Server 68.97 mWs 5.66 s
Cryptosystem RSA-1024 ECC-160	Key ex Client 3.51 mWs 0.29 s 6.15 mWs	change Server 68.97 mWs 5.66 s 6.15 mWs
Cryptosystem RSA-1024 ECC-160	Key ex Client 3.51 mWs 0.29 s 6.15 mWs 0.51 s	change Server 68.97 mWs 5.66 s 6.15 mWs 0.51 s
Cryptosystem RSA-1024 ECC-160 RSA-2048	Key ex Client 3.51 mWs 0.29 s 6.15 mWs 0.51 s 12.98 mWs	change Server 68.97 mWs 5.66 s 6.15 mWs 0.51 s 523.10 mWs
Cryptosystem RSA-1024 ECC-160 RSA-2048	Key ex Client 3.51 mWs 0.29 s 6.15 mWs 0.51 s 12.98 mWs 1.06 s	change Server 68.97 mWs 5.66 s 6.15 mWs 0.51 s 523.10 mWs 42.89 s
Cryptosystem RSA-1024 ECC-160 RSA-2048 ECC-224	Key ex Client 3.51 mWs 0.29 s 6.15 mWs 0.51 s 12.98 mWs 1.06 s 16.62 mWs	change Server 68.97 mWs 5.66 s 6.15 mWs 0.51 s 523.10 mWs 42.89 s 16.62 mWs

From ref(3) on Intel Core 2 1.83 GHz processor under Windows Vista in 32-bit mode Milliseconds/Operation

RSA 2048 Signature 6.05 RSA 2048 Verification 0.16 ECDSA over GF(p) 256 Signature 2.88 ECDSA over GF(p) 256 Verification 8.53 ECDHC over GF(p) 256 Key-Pair Generation 2.87 Secure MCUs 33MHz

RSA 2K signatures – 1000 fold increase for generation and verification over 16bit TI MSP430 (8Mhz) ECC 224 signatures – 300 fold increase for generation and verification over 16bit TI MSP430 (8Mhz)

References

- 1) Energy Analysis of Public Key Cryptography for Wireless Sensor Networks, S. Wander, N. Gura et. al.
- 2) Comparing Elliptic Curve Cryptography & RSA on 8 bit CPUs, N. Gura, A. Patel et. al., CHES 2004
- 3) Crypto++ 5.6.0 Benchmarks, <u>http://www.cryptopp.com/benchmarks.html</u> (on Intel Core 2 1.83 GHz processor under Windows Vista in 32-bit mode)
- 4) Krzysztof Piotrowski, Peter Langendoerfer, Steffen Peter, How Public Key Cryptography Influences Wireless Sensor Node Lifetime, SASN ACM 2006

- TF will adopt IETF IPR model
- IETF IP position stated in RFC 3979 'Intellectual Property Rights in IETF Technology'
- Task force leadership disclaims responsibility for assessments of the intellectual property status of contributions to this effort
- Expected that contributions accompanied by IP disclosures explicitly stating whether or not contributed materials contain IP
- Contributions without accompanying IP disclosures will be assumed IP encumbered
- All contributions will be voted into the spec., IP encumbered items will be flagged as such during time of vote
- If IP encumbered technology is voted into spec, its expected that owner provide technology under RAND licensing terms

Chairs

- Rohit Khera <u>rxkw@pge.com</u>
- Daniel Thanos <u>Daniel.Thanos@ge.com</u>
- Sharepoint

http://osgug.ucaiug.org/utilisec/embedded/default.aspx

Email Reflector –

'OPENSG-SGSEC-EMBSYSSEC-TF@SMARTGRIDLISTSERV.ORG'

Bi-Weekly Co-ordination and status calls